Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/wellecks/multiset
Loss Functions for Multiset Prediction
https://github.com/wellecks/multiset
Last synced: 17 days ago
JSON representation
Loss Functions for Multiset Prediction
- Host: GitHub
- URL: https://github.com/wellecks/multiset
- Owner: wellecks
- Created: 2017-11-24T14:34:38.000Z (about 7 years ago)
- Default Branch: master
- Last Pushed: 2017-12-10T02:58:08.000Z (about 7 years ago)
- Last Synced: 2024-10-29T20:13:00.749Z (2 months ago)
- Language: Python
- Size: 12.7 KB
- Stars: 1
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# multiset
Loss Functions for Multiset Prediction### Running
1. Generate an MNIST-multi dataset
2. Run `train.py` with suitable cmd line arguments e.g:
```bash
python train.py --dataset-path data/mnist_multi_70000_min20_max50_4 --mnist-multi \
--max-objects 4 --loss multiset_loss --use-cuda
```
Run `train.py -h` for cmd line argument details.Note that `--dataset-path` and `--max-objects` vary based on the MNIST Multi dataset used.
Choose the loss with `--loss`.
When using the sequential loss (`--loss ce_loss`), choose an ordering strategy with `--label-order`.