Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/wellecks/ntptutorial
Tutorial on neural theorem proving
https://github.com/wellecks/ntptutorial
Last synced: 2 months ago
JSON representation
Tutorial on neural theorem proving
- Host: GitHub
- URL: https://github.com/wellecks/ntptutorial
- Owner: wellecks
- License: mit
- Created: 2023-08-17T23:19:21.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2024-01-05T22:45:53.000Z (12 months ago)
- Last Synced: 2024-04-28T04:30:25.896Z (8 months ago)
- Language: Jupyter Notebook
- Size: 4.23 MB
- Stars: 135
- Watchers: 5
- Forks: 12
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# A tutorial on neural theorem proving
*Neural theorem proving* combines neural language models with formal proof assistants.\
This tutorial introduces two research threads in neural theorem proving via interactive Jupyter notebooks.## Part I : Next-step suggestion
Builds a neural next-step suggestion tool, introducing concepts and past work in neural theorem proving along the way.
#### Notebooks:
| Topic | Notebook |
|:-----------------------|-------:|
| 0. Intro | [notebook](./partI_nextstep/notebooks/I_nextstep_lean__part0_intro.ipynb) |
| 1. Data | [notebook](./partI_nextstep/notebooks/I_nextstep_lean__part1_data.ipynb) |
| 2. Learning | [notebook](./partI_nextstep/notebooks/I_nextstep_lean__part2_learn.ipynb) |
| 3. Proof Search | [notebook](./partI_nextstep/notebooks/I_nextstep_lean__part3_proofsearch.ipynb) |
| 4. Evaluation | [notebook](./partI_nextstep/notebooks/I_nextstep_lean__part4_evaluation.ipynb) |
| 5. `llmsuggest` | [notebook](./partI_nextstep/notebooks/I_nextstep_lean__part5_llmsuggest.ipynb) |All notebooks are in ([`partI_nextstep/notebooks`](./partI_nextstep/notebooks)). See [`partI_nextstep/ntp_python`](./partI_nextstep/ntp_python) and [`partI_nextstep/ntp_lean`](./partI_nextstep/ntp_lean) for the Python and Lean files covered in the notebooks.
#### Setup:
Please follow the setup instructions in [`partI_nextstep/README.md`](./partI_nextstep/README.md).## Part II : Language cascades
Chain together language models to guide formal proof search with informal proofs.#### Notebooks:
| Topic | Notebook |
|:-----------------------|-------:|
| 1. Language model cascades | [notebook](./partII_dsp/notebooks/II_dsp__part1_intro.ipynb) |
| 2. Draft, Sketch, Prove | [notebook](./partII_dsp/notebooks/II_dsp__part2_dsp.ipynb) |All notebooks are in ([`partII_dsp/notebooks`](./partII_dsp/notebooks)).
#### Setup:
Please follow the setup instructions in [`partII_dsp/README.md`](./partII_dsp/README.md).-------
### History
These materials were originally developed as part of a IJCAI 2023 tutorial. \
Slides for the 1 hour summary presentation given at IJCAI 2023 are [here](https://wellecks.com/data/welleck2023ntp_tutorial.pdf).#### Citation
If you find this tutorial or repository useful in your work, please cite:
```
@misc{ntptutorial,
author = {Sean Welleck},
title = {Neural theorem proving tutorial},
year = {2023},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/wellecks/ntptutorial}},
}
```