Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/wencheng256/SiamBAN-ACM
Code for CVPR2021 Learning to Fuse Asymmetric Feature Maps in Siamese Trackers
https://github.com/wencheng256/SiamBAN-ACM
Last synced: 6 days ago
JSON representation
Code for CVPR2021 Learning to Fuse Asymmetric Feature Maps in Siamese Trackers
- Host: GitHub
- URL: https://github.com/wencheng256/SiamBAN-ACM
- Owner: wencheng256
- License: apache-2.0
- Created: 2021-03-17T07:32:38.000Z (over 3 years ago)
- Default Branch: master
- Last Pushed: 2021-09-23T03:39:17.000Z (about 3 years ago)
- Last Synced: 2024-08-02T06:13:04.349Z (3 months ago)
- Language: Python
- Size: 18.6 MB
- Stars: 28
- Watchers: 3
- Forks: 2
- Open Issues: 8
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- Awesome-Visual-Object-Tracking - [code
README
# Learning to Fuse Asymmetric Feature Maps in Siamese Trackers
This paper has been accepted by CVPR2021
> paper: https://arxiv.org/abs/2012.02776
```
@article{han2020learning,
title={Learning to Fuse Asymmetric Feature Maps in Siamese Trackers},
author={Han, Wencheng and Dong, Xingping and Khan, Fahad Shahbaz and Shao, Ling and Shen, Jianbing},
journal={arXiv preprint arXiv:2012.02776},
year={2020}
}
```## weights and raw results
(Please remove the blank after https: by hand. It is used for anti-spider)raw results https:// iiai-wencheng2.oss-cn-hongkong.aliyuncs.com/acm_raw_results.zip
config and weights for LaSOT https:// iiai-wencheng2.oss-cn-hongkong.aliyuncs.com/LaSOT_weight_config.zip
config weights for VOT https:// iiai-wencheng2.oss-cn-hongkong.aliyuncs.com/weight_VOT2019.zip
## Installation
Please find installation instructions in [`INSTALL.md`](INSTALL.md).
## Quick Start: Using SiamBAN
### Add SiamBAN to your PYTHONPATH
```bash
export PYTHONPATH=/path/to/siamban:$PYTHONPATH
```### Download models
Download models in [Model Zoo](MODEL_ZOO.md) and put the `model.pth` in the correct directory in experiments
### Download testing datasets
Download datasets and put them into `testing_dataset` directory. Jsons of commonly used datasets can be downloaded from [here](https://drive.google.com/drive/folders/10cfXjwQQBQeu48XMf2xc_W1LucpistPI) or [here](https://pan.baidu.com/s/1et_3n25ACXIkH063CCPOQQ), extraction code: `8fju`. If you want to test tracker on new dataset, please refer to [pysot-toolkit](https://github.com/StrangerZhang/pysot-toolkit) to setting `testing_dataset`.
### Test tracker
```bash
cd experiments/siamban_r50_l234
python -u ../../tools/test.py \
--snapshot model.pth \ # model path
--dataset VOT2018 \ # dataset name
--config config.yaml # config file
```The testing results will in the current directory(results/dataset/model_name/)
### Eval tracker
assume still in experiments/siamban_r50_l234
``` bash
python ../../tools/eval.py \
--tracker_path ./results \ # result path
--dataset VOT2018 \ # dataset name
--num 1 \ # number thread to eval
--tracker_prefix 'model' # tracker_name
```## License
This project is released under the [Apache 2.0 license](LICENSE).