Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/wesm/pydata-book
Materials and IPython notebooks for "Python for Data Analysis" by Wes McKinney, published by O'Reilly Media
https://github.com/wesm/pydata-book
Last synced: 5 days ago
JSON representation
Materials and IPython notebooks for "Python for Data Analysis" by Wes McKinney, published by O'Reilly Media
- Host: GitHub
- URL: https://github.com/wesm/pydata-book
- Owner: wesm
- License: other
- Created: 2012-06-30T18:39:12.000Z (over 12 years ago)
- Default Branch: 3rd-edition
- Last Pushed: 2023-12-22T08:57:08.000Z (about 1 year ago)
- Last Synced: 2024-10-29T11:27:02.974Z (3 months ago)
- Language: Jupyter Notebook
- Homepage:
- Size: 62.2 MB
- Stars: 22,175
- Watchers: 1,482
- Forks: 15,166
- Open Issues: 21
-
Metadata Files:
- Readme: README.md
- License: COPYING
Awesome Lists containing this project
- my-awesome-github-stars - wesm/pydata-book - Materials and IPython notebooks for "Python for Data Analysis" by Wes McKinney, published by O'Reilly Media (Jupyter Notebook)
- awesome-astrodata - Python for Data Analysis
- awesome-starred - pydata-book - Materials and IPython notebooks for "Python for Data Analysis" by Wes McKinney, published by O'Reilly Media (Jupyter Notebook)
- awesome-quarto - Python for Data Analysis, 3E - "Python for Data Analysis" book thrid edition (see <https://wesmckinney.com/book/>). (Real-life examples / Book formats)
- StarryDivineSky - wesm/pydata-book
README
# Python for Data Analysis, 3rd Edition
Materials and IPython notebooks for "Python for Data Analysis, 3rd
Edition" by Wes McKinney, published by O'Reilly Media. Book content
including updates and errata fixes can be [found for free on my
website][6].[Buy the book on Amazon][1]
Follow Wes on Twitter: [![Twitter Follow](https://img.shields.io/twitter/follow/wesmckinn.svg?style=social&label=Follow)](https://twitter.com/wesmckinn)
# 2nd Edition Readers
If you are reading the 2nd Edition (published in 2017), please find the
reorganized book materials on the [`2nd-edition` branch][5].# 1st Edition Readers
If you are reading the 1st Edition (published in 2012), please find the
reorganized book materials on the [`1st-edition` branch][2].## IPython Notebooks:
* [Chapter 2: Python Language Basics, IPython, and Jupyter Notebooks](http://nbviewer.ipython.org/github/pydata/pydata-book/blob/3rd-edition/ch02.ipynb)
* [Chapter 3: Built-in Data Structures, Functions, and Files](http://nbviewer.ipython.org/github/pydata/pydata-book/blob/3rd-edition/ch03.ipynb)
* [Chapter 4: NumPy Basics: Arrays and Vectorized Computation](http://nbviewer.ipython.org/github/pydata/pydata-book/blob/3rd-edition/ch04.ipynb)
* [Chapter 5: Getting Started with pandas](http://nbviewer.ipython.org/github/pydata/pydata-book/blob/3rd-edition/ch05.ipynb)
* [Chapter 6: Data Loading, Storage, and File Formats](http://nbviewer.ipython.org/github/pydata/pydata-book/blob/3rd-edition/ch06.ipynb)
* [Chapter 7: Data Cleaning and Preparation](http://nbviewer.ipython.org/github/pydata/pydata-book/blob/3rd-edition/ch07.ipynb)
* [Chapter 8: Data Wrangling: Join, Combine, and Reshape](http://nbviewer.ipython.org/github/pydata/pydata-book/blob/3rd-edition/ch08.ipynb)
* [Chapter 9: Plotting and Visualization](http://nbviewer.ipython.org/github/pydata/pydata-book/blob/3rd-edition/ch09.ipynb)
* [Chapter 10: Data Aggregation and Group Operations](http://nbviewer.ipython.org/github/pydata/pydata-book/blob/3rd-edition/ch10.ipynb)
* [Chapter 11: Time Series](http://nbviewer.ipython.org/github/pydata/pydata-book/blob/3rd-edition/ch11.ipynb)
* [Chapter 12: Introduction to Modeling Libraries in Python](http://nbviewer.ipython.org/github/pydata/pydata-book/blob/3rd-edition/ch12.ipynb)
* [Chapter 13: Data Analysis Examples](http://nbviewer.ipython.org/github/pydata/pydata-book/blob/3rd-edition/ch13.ipynb)
* [Appendix A: Advanced NumPy](http://nbviewer.ipython.org/github/pydata/pydata-book/blob/3rd-edition/appa.ipynb)## License
### Code
The code in this repository, including all code samples in the notebooks listed
above, is released under the [MIT license](LICENSE-CODE). Read more at the
[Open Source Initiative](https://opensource.org/licenses/MIT).[1]: https://amzn.to/3DyLaJc
[2]: https://github.com/wesm/pydata-book/tree/1st-edition
[5]: https://github.com/wesm/pydata-book/tree/2nd-edition
[6]: https://wesmckinney.com/book/