An open API service indexing awesome lists of open source software.

https://github.com/wey-gu/nebula-dgl

NebulaGraph DGL(Deep Graph Library) Integration Package. (WIP)
https://github.com/wey-gu/nebula-dgl

dgl gcn gnn graph-algorithms graph-data graph-neural-network hacktoberfest nebula-graph nebulagraph networkx

Last synced: about 2 months ago
JSON representation

NebulaGraph DGL(Deep Graph Library) Integration Package. (WIP)

Awesome Lists containing this project

README

          

# nebula-dgl

[![pdm-managed](https://img.shields.io/badge/pdm-managed-blueviolet)](https://pdm.fming.dev) [![License](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](LICENSE)

nebula-dgl is the Lib for NebulaGraph integration with Deep Graph Library (DGL).

> nebula-dgl is still WIP, there is a demo project [here](https://github.com/wey-gu/NebulaGraph-Fraud-Detection-GNN/) .

# Guide

## Installation

### Install from PyPi

```bash
python3 -m pip install nebula-dgl
python3 -m pip install dgl dglgo -f https://data.dgl.ai/wheels/repo.html
```

### Install from codebase for dev
```bash
python3 -m pip install nebula3-python
python3 -m pip install dgl dglgo -f https://data.dgl.ai/wheels/repo.html

# build and install
python3 -m pip install .
```

## Playground

Clone this repository to your local directory first.

```bash
git clone https://github.com/wey-gu/nebula-dgl.git
cd nebula-dgl
```

0. Deploy NebulaGraph playground with Nebula-UP:

Install NebulaGraph:

```bash
curl -fsSL nebula-up.siwei.io/install.sh | bash
```

Load example data:

```bash
~/.nebula-up/load-basketballplayer-dataset.sh
```

1. Create a jupyter notebook in same docker network: `nebula-net`

```bash
docker run -it --name dgl -p 8888:8888 --network nebula-net \
-v "$PWD":/home/jovyan/work jupyter/datascience-notebook \
start-notebook.sh --NotebookApp.token='secret'
```
Now you can either:

- access the notebook at http://localhost:8888/lab/tree/work?token=secret and create a new notebook.

Or:

- run ipython with the container:

```bash
docker exec -it dgl ipython
cd work
```

2. Install nebula-dgl in notebook:

Install nebula-dgl:

```
!python3 -m pip install python3 -m pip install nebula3-python==3.4.0
!python3 -m pip install dgl dglgo -f https://data.dgl.ai/wheels/repo.html
!python3 -m pip install .
```

3. Try with a homogeneous graph:

```python
import yaml
import networkx as nx

from nebula_dgl import NebulaLoader

nebula_config = {
"graph_hosts": [
('graphd', 9669),
('graphd1', 9669),
('graphd2', 9669)
],
"nebula_user": "root",
"nebula_password": "nebula",
}

# scan loader(mostly for training)

with open('example/homogeneous_graph.yaml', 'r') as f:
feature_mapper = yaml.safe_load(f)

nebula_loader = NebulaLoader(nebula_config, feature_mapper)
homo_dgl_graph = nebula_loader.load()

# or query based(mostly for small graph when inference)

query = """
MATCH p=()-[:follow]->() RETURN p
"""
nebula_loader = NebulaLoader(nebula_config, feature_mapper, query=query, query_space="basketballplayer")
homo_dgl_graph = nebula_loader.load()

nx_g = homo_dgl_graph.to_networkx()
nx.draw(nx_g, with_labels=True, pos=nx.spring_layout(nx_g))
```

Result:

![nx_draw](https://user-images.githubusercontent.com/1651790/181154556-c25532f9-33ff-4cc8-85d9-62cb559d7f1a.png)

4. Compute the degree centrality of the graph:

```python
nx.degree_centrality(nx_g)
```
Result:

```python
{0: 0.0,
1: 0.04,
2: 0.02,
3: 0.02,
4: 0.06,
5: 0.06,
6: 0.04,
7: 0.24,
8: 0.16,
9: 0.0,
10: 0.02,
11: 0.04,
12: 0.04,
13: 0.04,
14: 0.1,
15: 0.04,
16: 0.0,
17: 0.1,
18: 0.04,
19: 0.04,
20: 0.0,
21: 0.0,
22: 0.04,
23: 0.02,
24: 0.02,
25: 0.04,
26: 0.06,
27: 0.0,
28: 0.02,
29: 0.0,
30: 0.04,
31: 0.12,
32: 0.04,
33: 0.22,
34: 0.14,
35: 0.1,
36: 0.04,
37: 0.14,
38: 0.1,
39: 0.02,
40: 0.14,
41: 0.08,
42: 0.1,
43: 0.12,
44: 0.12,
45: 0.08,
46: 0.1,
47: 0.02,
48: 0.04,
49: 0.12,
50: 0.06}
```

## NebulaGraph to DGL

```python
from nebula_dgl import NebulaLoader

nebula_config = {
"graph_hosts": [
('graphd', 9669),
('graphd1', 9669),
('graphd2', 9669)
],
"nebula_user": "root",
"nebula_password": "nebula"
}

# load feature_mapper from yaml file
with open('example/nebula_to_dgl_mapper.yaml', 'r') as f:
feature_mapper = yaml.safe_load(f)

nebula_loader = NebulaLoader(nebula_config, feature_mapper)
dgl_graph = nebula_loader.load()

```

## Play homogeneous graph algorithms in networkx

```python

import networkx

with open('example/homogeneous_graph.yaml', 'r') as f:
feature_mapper = yaml.safe_load(f)

nebula_loader = NebulaLoader(nebula_config, feature_mapper)
homo_dgl_graph = nebula_loader.load()
nx_g = homo_dgl_graph.to_networkx()

# plot it
networkx.draw(nx_g, with_lables=True)

# get degree
networkx.degree(nx_g)

# get degree centrality
networkx.degree_centrality(nx_g)
```

## Multi-Part Loader for NebulaGraph

1. For now, the Multi-Part Loader is slow like sequence scan, need to profile the performance.

```python
import yaml
import networkx as nx
import matplotlib.pyplot as plt

from nebula_dgl import NebulaReducedLoader

nebula_config = {
"graph_hosts": [
('127.0.0.1', 9669)
],
"nebula_user": "root",
"nebula_password": "nebula",
}

with open('example/homogeneous_graph.yaml', 'r') as f:
feature_mapper = yaml.safe_load(f)

# you only need change the following line: from NebulaLoader to NebulaReducedLoader
# Easy for you to use the multi-part loader
nebula_reduced_loader = NebulaReducedLoader(nebula_config, feature_mapper)
homo_dgl_graph = nebula_reduced_loader.load()
nx_g = homo_dgl_graph.to_networkx()
nx.draw(nx_g, with_labels=True, pos=nx.spring_layout(nx_g))
plt.savefig("multi_graph.png")
```