Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/wgierke/informaticup2018
Predicting the optimal strategy for fueling for a given route
https://github.com/wgierke/informaticup2018
convolutional-neural-networks fbprophet forcasting informaticup machine-learning prediction recurrent-neural-networks tensorflow timeseries-analysis
Last synced: 7 days ago
JSON representation
Predicting the optimal strategy for fueling for a given route
- Host: GitHub
- URL: https://github.com/wgierke/informaticup2018
- Owner: WGierke
- License: mit
- Created: 2017-11-24T08:03:53.000Z (about 7 years ago)
- Default Branch: master
- Last Pushed: 2022-12-07T23:45:21.000Z (about 2 years ago)
- Last Synced: 2024-10-29T09:54:38.605Z (2 months ago)
- Topics: convolutional-neural-networks, fbprophet, forcasting, informaticup, machine-learning, prediction, recurrent-neural-networks, tensorflow, timeseries-analysis
- Language: Jupyter Notebook
- Homepage: http://tofill.dyndns.info:7080
- Size: 17.3 MB
- Stars: 1
- Watchers: 4
- Forks: 1
- Open Issues: 36
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
informatiCup2018 [![CircleCI](https://circleci.com/gh/WGierke/informatiCup2018.svg?style=svg&circle-token=00f4e65f31b3192e58b793d0282ba0af8c009b44)](https://circleci.com/gh/WGierke/informatiCup2018)
==============================Predicting the optimal strategy for fueling for a given route ([task description](https://github.com/WGierke/informatiCup2018/blob/master/references/Intellitank.pdf)).
[Report](https://github.com/WGierke/informatiCup2018/blob/master/reports/informaticup2018.pdf)
[Routes](https://github.com/WGierke/informatiCup2018/tree/master/routes)Project Organization
------------├── LICENSE
├── README.md <- The top-level README for developers using this project.
├── data
│ ├── external <- Data from third party sources.
│ ├── processed <- The final, canonical data sets for modeling.
│ └── raw <- The original, immutable data dump.
│
├── models <- Trained and serialized models, model predictions, or model summaries
│
├── notebooks <- Jupyter notebooks. Naming convention is a number (for ordering),
│ the creator's initials, and a short `-` delimited description, e.g.
│ `1.0-jqp-initial-data-exploration`.
│
├── references <- Data dictionaries, manuals, and all other explanatory materials.
│
├── reports <- Generated analysis as HTML, PDF, LaTeX, etc.
│ └── figures <- Generated graphics and figures to be used in reporting
│
├── requirements.txt <- The requirements file for reproducing the analysis environment, e.g.
│ generated with `pip freeze > requirements.txt`
│
└── src <- Source code for use in this project.
├── __init__.py <- Makes src a Python module
│
├── features <- Scripts to turn raw data into features for modeling
│ └── build_features.py
│
├── models <- Scripts to train models and then use trained models to make
│ │ predictions
│ ├── predict_model.py
│ └── train_model.py
│
└── visualization <- Scripts to create exploratory and results oriented visualizations
└── visualize.py--------
### Setup- Clone the repository including submodules (to include the challenge data as well):
`git clone --recursive [email protected]:WGierke/informatiCup2018.git`
However, if you already downloaded the [InformatiCup2018 repository](https://github.com/InformatiCup/InformatiCup2018), you can also create a symbolic link that shows from `data/raw/input_data` to the informatiCup2018 repository. A sanity check would be that `data/raw/input_data/Eingabedaten/Fahrzeugrouten/Bertha\ Benz\ Memorial\ Route.csv` is accessible.- Install all dependencies
`pip3 install -r requirements.txt`### Usage
- To start the server:
`python3 src/serving/server.py`
- To predict the gas prices given using training data up to a specified point in time for a given point in time:
`python3 src/serving/price_prediction.py --input PATH_TO_PREDICTION_POINTS.CSV`
- To predict an optimal route given the path to an input file:
`python3 src/serving/route_prediction.py --input PATH_TO_ROUTE.CSV`### Credits
[Materialize](http://materializecss.com/)
[bootstrap-material-datetimepicker](https://github.com/T00rk/bootstrap-material-datetimepicker)