Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/wgierke/informaticup2018

Predicting the optimal strategy for fueling for a given route
https://github.com/wgierke/informaticup2018

convolutional-neural-networks fbprophet forcasting informaticup machine-learning prediction recurrent-neural-networks tensorflow timeseries-analysis

Last synced: 7 days ago
JSON representation

Predicting the optimal strategy for fueling for a given route

Awesome Lists containing this project

README

        

informatiCup2018 [![CircleCI](https://circleci.com/gh/WGierke/informatiCup2018.svg?style=svg&circle-token=00f4e65f31b3192e58b793d0282ba0af8c009b44)](https://circleci.com/gh/WGierke/informatiCup2018)
==============================

Predicting the optimal strategy for fueling for a given route ([task description](https://github.com/WGierke/informatiCup2018/blob/master/references/Intellitank.pdf)).

[Report](https://github.com/WGierke/informatiCup2018/blob/master/reports/informaticup2018.pdf)
[Routes](https://github.com/WGierke/informatiCup2018/tree/master/routes)

Project Organization
------------

├── LICENSE
├── README.md <- The top-level README for developers using this project.
├── data
│   ├── external <- Data from third party sources.
│   ├── processed <- The final, canonical data sets for modeling.
│   └── raw <- The original, immutable data dump.

├── models <- Trained and serialized models, model predictions, or model summaries

├── notebooks <- Jupyter notebooks. Naming convention is a number (for ordering),
│ the creator's initials, and a short `-` delimited description, e.g.
│ `1.0-jqp-initial-data-exploration`.

├── references <- Data dictionaries, manuals, and all other explanatory materials.

├── reports <- Generated analysis as HTML, PDF, LaTeX, etc.
│   └── figures <- Generated graphics and figures to be used in reporting

├── requirements.txt <- The requirements file for reproducing the analysis environment, e.g.
│ generated with `pip freeze > requirements.txt`

└── src <- Source code for use in this project.
   ├── __init__.py <- Makes src a Python module

   ├── features <- Scripts to turn raw data into features for modeling
   │   └── build_features.py

   ├── models <- Scripts to train models and then use trained models to make
│ │ predictions
   │   ├── predict_model.py
   │   └── train_model.py

   └── visualization <- Scripts to create exploratory and results oriented visualizations
   └── visualize.py

--------
### Setup

- Clone the repository including submodules (to include the challenge data as well):
`git clone --recursive [email protected]:WGierke/informatiCup2018.git`
However, if you already downloaded the [InformatiCup2018 repository](https://github.com/InformatiCup/InformatiCup2018), you can also create a symbolic link that shows from `data/raw/input_data` to the informatiCup2018 repository. A sanity check would be that `data/raw/input_data/Eingabedaten/Fahrzeugrouten/Bertha\ Benz\ Memorial\ Route.csv` is accessible.

- Install all dependencies
`pip3 install -r requirements.txt`

### Usage
- To start the server:
`python3 src/serving/server.py`
- To predict the gas prices given using training data up to a specified point in time for a given point in time:
`python3 src/serving/price_prediction.py --input PATH_TO_PREDICTION_POINTS.CSV`
- To predict an optimal route given the path to an input file:
`python3 src/serving/route_prediction.py --input PATH_TO_ROUTE.CSV`

### Credits
[Materialize](http://materializecss.com/)
[bootstrap-material-datetimepicker](https://github.com/T00rk/bootstrap-material-datetimepicker)