Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/wgrathwohl/LSD
Official Release of "Learning the Stein Discrepancy for Training and Evaluating Energy-Based Models without Sampling"
https://github.com/wgrathwohl/LSD
Last synced: 3 months ago
JSON representation
Official Release of "Learning the Stein Discrepancy for Training and Evaluating Energy-Based Models without Sampling"
- Host: GitHub
- URL: https://github.com/wgrathwohl/LSD
- Owner: wgrathwohl
- Created: 2020-07-08T13:56:55.000Z (over 4 years ago)
- Default Branch: master
- Last Pushed: 2020-07-08T15:39:26.000Z (over 4 years ago)
- Last Synced: 2024-07-31T18:15:54.587Z (6 months ago)
- Language: Python
- Size: 41 KB
- Stars: 45
- Watchers: 2
- Forks: 5
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome-energy-based-model - Github Code
README
# LSD
Official Release of "Learning the Stein Discrepancy for Training and Evaluating Energy-Based Models without Sampling"## To run toy data:
python lsd_toy.py --save /tmp/test_release --data moons --base_dist## To run ICA:
### mle
python lsd_ica.py --test_freq 1000 --dim ${DIM} --mode mle --save ${SAVE} --lr ${LR} --batch_size 1000 --test_batch_size 1000 --niters 100000 --log_freq 100 --seed 1235### score matching
python lsd_ica.py --test_freq 1000 --dim ${DIM} --mode sm --save ${SAVE} --lr ${LR} --batch_size 1000 --test_batch_size 1000 --niters 100000 --log_freq 100 --seed ${SEED}### nce
python lsd_ica.py --test_freq 1000 --dim ${DIM} --mode nce --save ${SAVE} --lr ${LR} --batch_size 1000 --test_batch_size 1000 --niters 100000 --log_freq 100 --seed ${SEED}### cnce
recommended EPS in (.01 .1 1.)python lsd_ica.py --test_freq 1000 --dim ${DIM} --mode cnce-${EPS} --save ${SAVE} --lr ${LR} --batch_size 1000 --test_batch_size 1000 --niters 100000 --log_freq 100 --seed ${SEED}
### LSD
recommended KITER in (1, 5) L2 in (.01, .1, 1., 10.)python lsd_ica.py --test_freq 1000 --dim ${DIM} --mode functional-${L2} --save ${SAVE} --lr ${LR} --batch_size 1000 --test_batch_size 1000 --niters 100000 --log_freq 100 --k_iters ${KITER} --seed ${SEED} &
## To run MNIST
recommended L2 (10., 1., .1) LR in (.0001, .00001, .001)python lsd_mnist.py --lr ${LR} --batch_size 256 --l2 ${L2} --save ${SAVE} --k_iters 5 --e_iters 1 --n_steps 100 --epochs 100 --viz_freq 500 --arch mlp --logit --weight_decay .0005 --base_dist
## To run hypothesis testing
must pip install git+https://github.com/wittawatj/kernel-gof.git and pip install git+https://github.com/wittawatj/interpretable-test### LSD
python lsd_test.py --test rbm-pert --sigma_pert ${PERT} --n_iters 1000 --l2 .5 --batch_size 800 --weight_decay .0005 --seed ${SEED} --n_train 800 --n_val 100 --n_test 100 --save ${SAVE} --dropout --maximize_power --val_power### FSSD
python lsd_test.py --test rbm-pert --sigma_pert ${PERT} --seed ${SEED} --n_train 200 --n_val 0 --n_test 800 --save ${SAVE} --test_type fssd### MMD
python lsd_test.py --test rbm-pert --sigma_pert ${PERT} --seed ${SEED} --n_train 200 --n_val 0 --n_test 800 --save ${SAVE} --test_type mmd### LKSD
python lsd_test.py --test rbm-pert --sigma_pert ${PERT} --seed ${SEED} --n_train 200 --n_val 0 --n_test 800 --save ${SAVE} --test_type lksd### KSD
python lsd_test.py --test rbm-pert --sigma_pert ${PERT} --seed ${SEED} --n_train 200 --n_val 0 --n_test 800 --save ${SAVE} --test_type ksd