Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/wh200720041/ssl_slam3
SSL_LIO: Solid-State LiDAR based LiDAR-Inertial SLAM
https://github.com/wh200720041/ssl_slam3
mapping ros slam
Last synced: about 2 months ago
JSON representation
SSL_LIO: Solid-State LiDAR based LiDAR-Inertial SLAM
- Host: GitHub
- URL: https://github.com/wh200720041/ssl_slam3
- Owner: wh200720041
- License: gpl-3.0
- Created: 2022-05-26T11:14:20.000Z (over 2 years ago)
- Default Branch: master
- Last Pushed: 2024-03-24T07:58:43.000Z (10 months ago)
- Last Synced: 2024-03-24T08:35:34.676Z (10 months ago)
- Topics: mapping, ros, slam
- Language: C++
- Homepage:
- Size: 50.9 MB
- Stars: 84
- Watchers: 6
- Forks: 20
- Open Issues: 5
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# SSL_SLAM3
## Lightweight 3-D Localization and Mapping for Solid-State LiDAR (Intel Realsense L515 as an example)### This work provides a basic fusion framework that fuses LiDAR and IMU information to improve the stability performance of SSL_SLAM
If you would like to enable save map and test localization separately, you can check this repo: [SSL_SLAM2](https://github.com/wh200720041/ssl_slam2)
This code is an improved implementation of paper "Lightweight 3-D Localization and Mapping for Solid-State LiDAR", accepted in IEEE Robotics and Automation Letters, 2021
A summary video demo can be found at [Video](https://youtu.be/Uy_2MKwUDN8)
**Modifier:** [Wang Han](http://wanghan.pro), Nanyang Technological University, Singapore
## 1. Solid-State Lidar Sensor Example
### 1.1 Scene reconstruction### 1.2 SFM building example
### 1.3 Localization and Mapping with L515
## 2. Prerequisites
### 2.1 **Ubuntu** and **ROS**
Ubuntu 64-bit 18.04.ROS Noetic. [ROS Installation](http://wiki.ros.org/ROS/Installation)
### 2.2. **Ceres Solver**
Follow [Ceres Installation](http://ceres-solver.org/installation.html).### 2.3. **PCL**
Follow [PCL Installation](http://www.pointclouds.org/downloads/linux.html).Tested with 1.8.1
### 2.4. **Trajectory visualization**
For visualization purpose, this package uses hector trajectory sever, you may install the package by
```
sudo apt-get install ros-noetic-hector-trajectory-server
```
Alternatively, you may remove the hector trajectory server node if trajectory visualization is not needed## 3. Build
### 3.1 Clone repository:
```
cd ~/catkin_ws/src
git clone https://github.com/wh200720041/ssl_slam3.git
cd ..
catkin_make
source ~/catkin_ws/devel/setup.bash
```### 3.2 Download test rosbag
You may download our [recorded data](https://drive.google.com/file/d/1ed5KSiXcmBxnIMcHpiy41E5sM5NtAZra/view?usp=sharing) (7.8GB) if you dont have realsense L515, and by defult the file should be under home/user/Downloads
unzip the file
```
cd ~/Downloads
unzip ~/Downloads/library.zip
```### 3.3 Launch ROS
```
roslaunch ssl_slam3 ssl_slam3.launch
```## 4. Sensor Setup
If you have new Realsense L515 sensor, you may follow the below setup instructions### 4.1 IMU calibration (optional)
You may read official document [L515 Calibration Manual] (https://github.com/l515_calibration_manual.pdf) firstuse the following command to calibrate imu, note that the build-in imu is a low-grade imu, to get better accurate, you may use your own imu
```
cd ~/catkin_ws/src/ssl_slam3/l515_imu_calibration
python rs-imu-calibration.py
```### 4.2 L515
### 4.3 Librealsense
Follow [Librealsense Installation](https://github.com/IntelRealSense/librealsense/blob/master/doc/installation.md)### 4.4 Realsense_ros
Copy [realsense_ros](https://github.com/IntelRealSense/realsense-ros) package to your catkin folder
```
cd ~/catkin_ws/src
git clone https://github.com/IntelRealSense/realsense-ros.git
cd ..
catkin_make
```### 4.5 Launch ROS
Make Lidar still for 1 sec to estimate the initial bias, otherwise will cause localization failure!
```
roslaunch ssl_slam3 ssl_slam3_L515.launch
```## 5. Citation
If you use this work for your research, you may want to cite the paper below, your citation will be appreciated
```
@article{wang2021lightweight,
author={H. {Wang} and C. {Wang} and L. {Xie}},
journal={IEEE Robotics and Automation Letters},
title={Lightweight 3-D Localization and Mapping for Solid-State LiDAR},
year={2021},
volume={6},
number={2},
pages={1801-1807},
doi={10.1109/LRA.2021.3060392}}
```