https://github.com/wiktorlazarski/edge-aware-face-autoencoder
👨🎨 Edge-aware Face Autoencoder.
https://github.com/wiktorlazarski/edge-aware-face-autoencoder
autoencoder celeba-dataset computer-vision deep-learning face generative-model hydra image-compression pytorch pytorch-lightning vae-pytorch wandb
Last synced: 2 months ago
JSON representation
👨🎨 Edge-aware Face Autoencoder.
- Host: GitHub
- URL: https://github.com/wiktorlazarski/edge-aware-face-autoencoder
- Owner: wiktorlazarski
- License: other
- Created: 2022-03-29T15:28:30.000Z (about 3 years ago)
- Default Branch: master
- Last Pushed: 2022-06-07T15:58:59.000Z (almost 3 years ago)
- Last Synced: 2025-01-19T06:19:59.127Z (4 months ago)
- Topics: autoencoder, celeba-dataset, computer-vision, deep-learning, face, generative-model, hydra, image-compression, pytorch, pytorch-lightning, vae-pytorch, wandb
- Language: Jupyter Notebook
- Homepage: https://colab.research.google.com/drive/1b3afUvKmuWQblkxIpGxUAOt0pZk3DBa3?usp=sharing
- Size: 93.1 MB
- Stars: 1
- Watchers: 3
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
______________________________________________________________________
# 👨🎨 Edge-aware Face Autoencoder
______________________________________________________________________
[](https://github.com/wiktorlazarski/edge-aware-face-autoencoder/actions/workflows/ci-testing.yml)
[](https://colab.research.google.com/drive/1b3afUvKmuWQblkxIpGxUAOt0pZk3DBa3?usp=sharing)
[](https://github.com/psf/black)## 💎 Installation with `pip`
Installation is as simple as running:
```bash
pip install git+https://github.com/wiktorlazarski/edge-aware-face-autoencoder.git
```## 🧐 Qualitative results
#### Original images
---
#### Baseline model without edge-awareness trained on images with 256px resolution, VAE latent dimension equals to 512 and reconstruction loss weight equals to 100 000. Edges' weight was set to 1.
---
#### Edge-aware model with edges' weight set to 3. All other parameters were the same as in the baseline model.
---
#### Edge-aware model with edges' weight set to 10. All other parameters were the same as in the baseline model.
---
## ⚙️ Setup for development with `pip`
```bash
# Clone repo
git clone https://github.com/wiktorlazarski/edge-aware-face-autoencoder.git# Go to repo directory
cd edge-aware-face-autoencoder# (Optional) Create virtual environment
python -m venv venv
source ./venv/bin/activate# Install project in editable mode
pip install -e .[dev]# (Optional but recommended) Install pre-commit hooks to preserve code format consistency
pre-commit install
```## 🐍 Setup for development with `conda`
```bash
# Clone repo
git clone https://github.com/wiktorlazarski/edge-aware-face-autoencoder.git# Go to repo directory
cd edge-aware-face-autoencoder# Create and activate conda environment
conda env create -f ./conda_env.yml
conda activate face_autoencoder# (Optional but recommended) Install pre-commit hooks to preserve code format consistency
pre-commit install
```### 🤗 Enjoy the model !