Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/wilicc/gpu-burn

Multi-GPU CUDA stress test
https://github.com/wilicc/gpu-burn

Last synced: 2 days ago
JSON representation

Multi-GPU CUDA stress test

Awesome Lists containing this project

README

        

# gpu-burn
Multi-GPU CUDA stress test
http://wili.cc/blog/gpu-burn.html

# Easy docker build and run

```
git clone https://github.com/wilicc/gpu-burn
cd gpu-burn
docker build -t gpu_burn .
docker run --rm --gpus all gpu_burn
```

# Binary packages

https://repology.org/project/gpu-burn/versions

# Building
To build GPU Burn:

`make`

To remove artifacts built by GPU Burn:

`make clean`

GPU Burn builds with a default Compute Capability of 5.0.
To override this with a different value:

`make COMPUTE=`

CFLAGS can be added when invoking make to add to the default
list of compiler flags:

`make CFLAGS=-Wall`

LDFLAGS can be added when invoking make to add to the default
list of linker flags:

`make LDFLAGS=-lmylib`

NVCCFLAGS can be added when invoking make to add to the default
list of nvcc flags:

`make NVCCFLAGS=-ccbin `

CUDAPATH can be added to point to a non standard install or
specific version of the cuda toolkit (default is
/usr/local/cuda):

`make CUDAPATH=/usr/local/cuda-`

CCPATH can be specified to point to a specific gcc (default is
/usr/bin):

`make CCPATH=/usr/local/bin`

CUDA_VERSION and IMAGE_DISTRO can be used to override the base
images used when building the Docker `image` target, while IMAGE_NAME
can be set to change the resulting image tag:

`make IMAGE_NAME=myregistry.private.com/gpu-burn CUDA_VERSION=12.0.1 IMAGE_DISTRO=ubuntu22.04 image`

# Usage

GPU Burn
Usage: gpu_burn [OPTIONS] [TIME]

-m X Use X MB of memory
-m N% Use N% of the available GPU memory
-d Use doubles
-tc Try to use Tensor cores (if available)
-l List all GPUs in the system
-i N Execute only on GPU N
-h Show this help message

Example:
gpu_burn -d 3600