Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/willclarktech/ts-rl
Reinforcement learning using TensorFlow.js
https://github.com/willclarktech/ts-rl
Last synced: 17 days ago
JSON representation
Reinforcement learning using TensorFlow.js
- Host: GitHub
- URL: https://github.com/willclarktech/ts-rl
- Owner: willclarktech
- License: mit
- Created: 2020-06-22T16:58:07.000Z (over 4 years ago)
- Default Branch: main
- Last Pushed: 2024-06-17T22:29:45.000Z (8 months ago)
- Last Synced: 2024-06-18T23:12:10.705Z (8 months ago)
- Language: TypeScript
- Size: 1.45 MB
- Stars: 0
- Watchers: 3
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# ts-rl
Reinforcement learning using TensorFlow.js
## Installation
Install Node modules:
```shell
npm install
```For Python integration you will also need:
- Python v3
- Jupyter Notebook
- pip modules (TODO: document these)## Starting the results server
```shell
npm run serve
```Navigate to [http://localhost:8000]() to see charts of training losses. The chart data will be refreshed every few seconds for live feedback during training.
## Training models
```shell
# npm start [algorithm] [environment]
# eg:
npm start dqn blackjack
```## Loading models into Python
Convert saved model using `npm run convert `, eg:
```shell
npm run convert ./models/DQN-CartPole-q-network/model.json ./models/DQN-CartPole-q-network-converted
```Start Jupyter Notebook:
```shell
npm run notebook
```See demo model loading/evaluation in [`https://github.com/willclarktech/ts-rl/blob/master/notebooks/model-load-demo.ipynb`]().