Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/willguimont/transformers
Flexible transformer implementation for research
https://github.com/willguimont/transformers
deep-learning deep-neural-networks learning machine-learning pytorch transformer transformer-architecture
Last synced: about 12 hours ago
JSON representation
Flexible transformer implementation for research
- Host: GitHub
- URL: https://github.com/willguimont/transformers
- Owner: willGuimont
- License: mit
- Created: 2023-03-23T15:51:47.000Z (almost 2 years ago)
- Default Branch: master
- Last Pushed: 2025-02-12T19:41:57.000Z (3 days ago)
- Last Synced: 2025-02-12T20:25:29.727Z (3 days ago)
- Topics: deep-learning, deep-neural-networks, learning, machine-learning, pytorch, transformer, transformer-architecture
- Language: Python
- Homepage:
- Size: 107 KB
- Stars: 5
- Watchers: 1
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
- Citation: CITATION.cff
Awesome Lists containing this project
README
# transformers
Collection of easy to understand transformer-based models in PyTorch.
The implementation is heavily commented and should be easy to follow.## Installation
```bash
pip install git+https://github.com/willGuimont/transformers
```## Implemented models
General:
- Transformer (Vaswani et al., 2017)
- Parallel Transformer (Dehghani et al., 2023)
- PerceiverIO (Jaegle et al., 2022)Positional encoding:
- Sinusoidal positional encoding
- Relative positional encoding
- Learnable positional encoding
- Learnable Fourier positional encoding (Li, 2021)Vision:
- VisionTransformer (Dosovitskiy et al., 2021)
NLP:
- Simple character-level Transformer language model
## Next steps
- VICReg
- Rotary positional encoding https://arxiv.org/pdf/2104.09864.pdf
- Optimizing Deeper Transformers on Small Datasets (Xu et al., 2021)
- Neural Machine Translation by Jointly Learning to Align and Translate (Bahdanau et al., 2016)
- Universal Transformers [Paper](https://arxiv.org/abs/2310.07096)
- Hiera: A Hierarchical Vision Transformer without the Bells-and-Whistles (Ryali et al., 2023)
- Swin Transformer (Liu et al., 2021)
- DINO: Emerging Properties in Self-Supervised Vision Transformers (Caron et al., 2021)
- FlashAttention (Dao et al., 2022)
- DETR (Carion et al., 2020)
- Unlimiformer: Long-Range Transformers with Unlimited Length Input (Bertsch et al., 2023)
- PointBERT (Yu et al., 2022)
- Hydra Attention: Efficient Attention with Many Heads (Bolya et al., 2022)
- Hyena Hierarchy: Towards Larger Convolutional Language Models (Poli et al., 2023)
- Thinking Like Transformers (Weiss et al., 2021)
- Long short-term memory (Schmidhuber, 1997)
- Rethinking Positional Encoding in Language Pre-training (Ke et al., 2021)## Cite this repository
```
@software{Guimont-Martin_transformer_flexible_and_2023,
author = {Guimont-Martin, William},
month = {2},
title = {{transformer: flexible and easy to understand transformer models}},
version = {0.1.0},
year = {2023}
}
```