Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/williamjameshandley/spherical_kde

Kernel density estimation on a sphere
https://github.com/williamjameshandley/spherical_kde

astronomy bandwidth cartopy information-visualization kernel-density-estimation machine-learning mollweide-projection physics probability python sphere statistics von-mises-fisher

Last synced: about 3 hours ago
JSON representation

Kernel density estimation on a sphere

Awesome Lists containing this project

README

        

[![Build Status](https://travis-ci.org/williamjameshandley/spherical_kde.svg?branch=master)](https://travis-ci.org/williamjameshandley/spherical_kde)
[![codecov](https://codecov.io/gh/williamjameshandley/spherical_kde/branch/master/graph/badge.svg)](https://codecov.io/gh/williamjameshandley/spherical_kde)
[![PyPI version](https://badge.fury.io/py/spherical_kde.svg)](https://badge.fury.io/py/spherical_kde)
[![Documentation Status](https://readthedocs.org/projects/spherical-kde/badge/?version=latest)](http://spherical-kde.readthedocs.io/en/latest/?badge=latest)
[![DOI](https://zenodo.org/badge/126525378.svg)](https://zenodo.org/badge/latestdoi/126525378)

Spherical Kernel Density Estimation
===================================

These packages allow you to do rudimentary kernel density estimation on a
sphere. Suggestions for improvements/extensions welcome.

The fundamental principle is to replace the traditional Gaussian function used
in
[kernel density estimation](https://en.wikipedia.org/wiki/Kernel_density_estimation)
with the
[Von Mises-Fisher distribution](https://en.wikipedia.org/wiki/Von_Mises-Fisher_distribution).

Bandwidth estimation is still rough-and-ready.

![](https://raw.github.com/williamjameshandley/spherical_kde/master/plot.png)

Example Usage
-------------

```python
import numpy
from spherical_kde import SphericalKDE
import matplotlib.pyplot as plt
import cartopy.crs
from matplotlib.gridspec import GridSpec, GridSpecFromSubplotSpec

# Choose a seed for deterministic plot
numpy.random.seed(seed=0)

# Set up a grid of figures
fig = plt.figure(figsize=(10, 10))
gs_vert = GridSpec(3, 1)
gs_lower = GridSpecFromSubplotSpec(1, 2, subplot_spec=gs_vert[1])

fig.add_subplot(gs_vert[0], projection=cartopy.crs.Mollweide())
fig.add_subplot(gs_lower[0], projection=cartopy.crs.Orthographic())
fig.add_subplot(gs_lower[1], projection=cartopy.crs.Orthographic(-10, 45))
fig.add_subplot(gs_vert[2], projection=cartopy.crs.PlateCarree())

# Choose parameters for samples
nsamples = 100
pi = numpy.pi

# Generate some samples centered on (1,1) +/- 0.3 radians
theta_samples = numpy.random.normal(loc=1, scale=0.3, size=nsamples)
phi_samples = numpy.random.normal(loc=1, scale=0.3, size=nsamples)
phi_samples = numpy.mod(phi_samples, pi*2)
kde_green = SphericalKDE(phi_samples, theta_samples)

# Generate some samples centered on (-1,1) +/- 0.4 radians
theta_samples = numpy.random.normal(loc=1, scale=0.4, size=nsamples)
phi_samples = numpy.random.normal(loc=-1, scale=0.4, size=nsamples)
phi_samples = numpy.mod(phi_samples, pi*2)
kde_red = SphericalKDE(phi_samples, theta_samples)

# Generate a spread of samples along latitude 2, height 0.1
theta_samples = numpy.random.normal(loc=2, scale=0.1, size=nsamples)
phi_samples = numpy.random.uniform(low=-pi/2, high=pi/2, size=nsamples)
phi_samples = numpy.mod(phi_samples, pi*2)
kde_blue = SphericalKDE(phi_samples, theta_samples, bandwidth=0.1)

for ax in fig.axes:
ax.set_global()
ax.gridlines()
ax.coastlines(linewidth=0.1)
kde_green.plot(ax, 'g')
kde_green.plot_samples(ax)
kde_red.plot(ax, 'r')
kde_blue.plot(ax, 'b')

# Save to plot
fig.tight_layout()
fig.savefig('plot.png')
```