https://github.com/willie-conway/meta-data-analyst-portfolio
A comprehensive πportfolio showcasing projects and skills developed during the Meta Data Analyst Professional Certificate πcourse, featuring πdata analysis, πvisualization, and π¨πΏβπ»management using various βοΈtools.
https://github.com/willie-conway/meta-data-analyst-portfolio
big-data business-intelligence data-analysis data-cleaning data-driven-decisions data-management data-mining data-visualization exploratory-data-analysis jupyter-notebook machine-learning pandas porfolio predictive-modeling python spreadsheet-analysis sql statistics tableau visualization-tools
Last synced: 3 months ago
JSON representation
A comprehensive πportfolio showcasing projects and skills developed during the Meta Data Analyst Professional Certificate πcourse, featuring πdata analysis, πvisualization, and π¨πΏβπ»management using various βοΈtools.
- Host: GitHub
- URL: https://github.com/willie-conway/meta-data-analyst-portfolio
- Owner: Willie-Conway
- License: mit
- Created: 2024-10-25T06:07:55.000Z (12 months ago)
- Default Branch: main
- Last Pushed: 2025-06-23T00:52:39.000Z (4 months ago)
- Last Synced: 2025-06-23T01:32:31.882Z (4 months ago)
- Topics: big-data, business-intelligence, data-analysis, data-cleaning, data-driven-decisions, data-management, data-mining, data-visualization, exploratory-data-analysis, jupyter-notebook, machine-learning, pandas, porfolio, predictive-modeling, python, spreadsheet-analysis, sql, statistics, tableau, visualization-tools
- Language: Jupyter Notebook
- Homepage: https://github.com/Willie-Conway/Meta-Data-Analyst-Portfolio/blob/main/Statistics%20Foundations/Jupyter%20Nootebook/Facebook%20Ad%20Conversions%20Analysis.ipynb
- Size: 49.3 MB
- Stars: 1
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- Changelog: CHANGELOG.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
Awesome Lists containing this project
README
# Meta Data Analyst Professional Certificate Portfolio

## Overview
Welcome to my portfolio! I have completed the **Meta Data Analyst Professional Certificate**, where I gained valuable skills and knowledge in data analysis, data management, and data visualization. This portfolio showcases the projects and assignments I completed during the course, highlighting my proficiency in key concepts and tools.
## πTable of Contents
- [Course Summary](#course-summary)
- [Skills Acquired](#skills-acquired)
- [Projects](#projects)
- [Project 1: Data Cleaning and Preparation](#project-1-data-cleaning-and-preparation)
- [Project 2: Data Visualization](#project-2-data-visualization)
- [Project 3: Exploratory Data Analysis](#project-3-exploratory-data-analysis)
- [Project 4: Data Storytelling](#project-4-data-storytelling)
- [Tools and Technologies](#tools-and-technologies)
- [Conclusion](#conclusion)
- [Contact Information](#contact-information)## πPortfolio Structure
```markdown
/MyPortfolio
β
βββ /Data_Analysis_with_Spreadsheets_and_SQL
β βββ Commonly_Used_Spreadsheet_Tools.py
β βββ Data_Analysis_with_Spreadsheets.py
β βββ Explore_Data_Visually.py
β βββ Most_Profitable_Stores.twb
β βββ Overview_Of_Common_Chart_Types.py
β βββ README.md # Project description and usage instructions
β
βββ /Data_Analytics
β βββ Case_Study.py
β βββ Data_Analysis_vs_Data_Science.py
β βββ Data_Exploration_Checklist.py
β βββ Data_Scrubbing_Checklist.py
β βββ Datasources.py
β βββ Different_Types_Of_Models.py
β βββ Experience_the_Power_of_GenAI.py
β βββ Exploring_and_Modeling_Data.py
β βββ Feature_Engineering.py
β βββ Generative_AI_Overview.py
β βββ Generative_AI_Response.py
β βββ Key_Points_on_GenAI_in_Data_Analytics.py
β βββ OSEMN_Framework.py
β βββ OSEMN_Framework_for_Cat_and_Dog_Products.py
β βββ Obtaining_Data.py
β βββ Obtaining_and_Scrubbing_Data.py
β βββ Validity_Of_Data_Checklist.py
β βββ iNterpreting_Data.py
β βββ iNterpreting_Data_and_Storytelling.py
β βββ README.md # Project description and usage instructions
β
βββ /Data_Management
β βββ Big_Data_Management_Systems_Roundup.py
β βββ Compliance_Best_Practices.py
β βββ Data_Collection_Tool_Roundup.py
β βββ Data_Profiling_and_Validation_Tools_Roundup.py
β βββ Data_Storage_Formats.py
β βββ Data_Visualization_Tools_Roundup.py
β βββ Data_security_Fundamentals.py
β βββ Machine_Learning_Tools_Roundup.py
β βββ Storage_Solutions_Roundup.py
β βββ Storage_System_Roundup.py
β βββ Storage_Tools_Roundup.py
β βββ Using_Data.py
β
βββ /Python_Data_Analytics
β βββ /Jupyter_Notebooks
β β βββ .ipynb_checkpoints
β β βββ Aggregations.ipynb
β β βββ Basic_Exploration.ipynb
β β βββ Booleans_in_Python.ipynb
β β βββ Conditional_Statements.ipynb
β β βββ Creating_Explanatory_Visualizations.ipynb
β β βββ Creating_Visualizations.ipynb
β β βββ Dictionaries.ipynb
β β βββ Exploration_-_Basic_Statistics.ipynb
β β βββ Exploration_-_Filtering_Data.ipynb
β β βββ Exploring_With_Visualizations.ipynb
β β βββ Full_OSEMN.ipynb
β β βββ Introduction_to_Libraries.ipynb
β β βββ Lists_and_Tuples.ipynb
β β βββ Modeling_with_Python.ipynb
β β βββ Modifying_Values.ipynb
β β βββ Removing_Data.ipynb
β β βββ Selective_Subsets.ipynb
β β βββ Subsets_with_Pandas.ipynb
β β βββ Using_Pandas_and_Matplotlib_to_Create_Visualizations.ipynb
β β βββ Variables_in_Python.ipynb
β βββ README.md # Overview of Python data analytics projects
β
βββ /Sample_Data
β βββ Activity_Dataset_Cleaned.xlsx
β βββ Activity_Dataset_Cleaning.xlsx
β βββ Home_Selling_Prices.xlsx
β βββ Website_Sales.xlsx
β βββ README.md # Description of the datasets
β
βββ /Statistics_Foundations
β βββ /Capstones_Modules
β β βββ 1_Getting_to_Know_the_Data
β β β βββ Datasets
β β β βββ Screenshots
β β βββ 2_Understanding_Your_Data_Samples
β β β βββ Datasets
β β β βββ Screenshots
β β βββ 3_Testing_Your_Hypothesis
β β β βββ Datasets
β β β βββ Screenshots
β β βββ 4_Data_Modeling
β β βββ Datasets
β β βββ Screenshots
β βββ README.md # Overview of statistics foundations projects
β
βββ /Tableau
β βββ Age_and_Income_-_Cluster_Analysis.twb
β βββ Time_Series.twb
β βββ README.md # Overview of Tableau projects
β
βββ /Excel
β βββ AB_Testing.ipynb
β βββ Capstone_Week_4_-_Show_Me_the_Model.ipynb
β βββ README.md # Overview of Excel projects
β
βββ .gitignore
βββ CHANGELOG.md
βββ CONTRIBUTING.md
βββ LICENSE
βββ README.md # Main overview of the entire portfolio
βββ requirements.txt```
## πCourse Summary
The Meta Data Analyst Professional Certificate program provided me with comprehensive training in various aspects of data analysis. I learned about π data collection, π§Ήcleaning, πvisualization, and the importance of metadata in managing and analyzing data effectively.
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
## βοΈSkills Acquired
- Data cleaning and preprocessing
- Data visualization techniques
- Exploratory data analysis (EDA)
- Statistical analysis and interpretation
- Data storytelling and presentation
- Proficiency in tools such as `Excel`, `Python`, and `SQL`## π οΈProjects
### Project 1: Data Cleaning and Preparation
- **Objective**: Clean and prepare a raw dataset for analysis.
- **Description**: I worked with a messy dataset containing missing values, duplicates, and inconsistencies. I applied techniques to clean the data, including:
- Removing duplicates
- Imputing missing values
- Normalizing data formats
- **Technologies Used**: `Python` (`Pandas`), `Excel`, `SQL`
- **Link**: [Getting to Know the Data](link-to-your-project)### Project 2: Data Visualization
- **Objective**: Create compelling visualizations to convey insights from data.
- **Description**: I utilized visualization libraries to create informative charts and graphs that highlight key trends and patterns in the data.
- **Key Visualizations**:
- Bar charts
- Line graphs
- Heatmaps
- **Technologies Used**: `Python` (`Matplotlib`, `Seaborn`), `Tableau`
- **Link**: [Understanding Your Data Samples](link-to-your-project)### Project 3: Exploratory Data Analysis
- **Objective**: Conduct a thorough exploratory data analysis on a given dataset.
- **Description**: I analyzed a dataset to uncover insights and relationships between variables. This involved:
- Descriptive statistics
- Correlation analysis
- Identifying outliers
- **Technologies Used**: `Python` (`Pandas`, `NumPy`), `Excel`, `SQL`
- **Link**: [Testing Your Hypothesis](link-to-your-project)### Project 4: Data Storytelling
- **Objective**: Develop a narrative around data findings to present to stakeholders.
- **Description**: I created a presentation that tells a story using data visualizations and analyses, focusing on making insights accessible and actionable.
- **Key Components**:
- Storyboarding the presentation
- Creating engaging visuals
- Highlighting actionable insights
- **Technologies Used**: `PowerPoint`, `Tableau`
- **Link**: [Data Modeling](link-to-your-project)## βοΈTools and Technologies
- **Programming Languages**: `Python`, `SQL`
- **Data Analysis Tools**: `Excel`, `Pandas`, `NumPy`
- **Data Visualization Tools**: `Matplotlib`, `Seaborn`, `Tableau`
- **Other Tools**: `PowerPoint`, `Jupyter Notebooks`## Conclusion
Completing the Meta Data Analyst Professional Certificate has equipped me with the essential skills and knowledge to pursue a career in data analysis. I am excited to apply what Iβve learned in real-world scenarios and look forward to contributing to data-driven projects.
Feel free to reach out if you have any questions or would like to discuss my work further!
## Contact Information
- **Email**: [hire.willie.conway@gmail.com](mailto:hire.willie.conway@gmail.com)
- **GitHub**: [Willie-Conway](https://github.com/Willie-Conway)
- **LinkedIn**: [Willie Conway](https://www.linkedin.com/in/willieconway/)