An open API service indexing awesome lists of open source software.

https://github.com/willie-conway/meta-data-analyst-portfolio

A comprehensive πŸ“športfolio showcasing projects and skills developed during the Meta Data Analyst Professional Certificate πŸŽ“course, featuring πŸ“ˆdata analysis, πŸ“Švisualization, and πŸ‘¨πŸΏβ€πŸ’»management using various βš™οΈtools.
https://github.com/willie-conway/meta-data-analyst-portfolio

big-data business-intelligence data-analysis data-cleaning data-driven-decisions data-management data-mining data-visualization exploratory-data-analysis jupyter-notebook machine-learning pandas porfolio predictive-modeling python spreadsheet-analysis sql statistics tableau visualization-tools

Last synced: 3 months ago
JSON representation

A comprehensive πŸ“športfolio showcasing projects and skills developed during the Meta Data Analyst Professional Certificate πŸŽ“course, featuring πŸ“ˆdata analysis, πŸ“Švisualization, and πŸ‘¨πŸΏβ€πŸ’»management using various βš™οΈtools.

Awesome Lists containing this project

README

          

# Meta Data Analyst Professional Certificate Portfolio

![Meta Data Analyst](https://images.credly.com/size/340x340/images/4dd82f2c-e7eb-4b64-bb24-f4351f596220/image.png)

## Overview

Welcome to my portfolio! I have completed the **Meta Data Analyst Professional Certificate**, where I gained valuable skills and knowledge in data analysis, data management, and data visualization. This portfolio showcases the projects and assignments I completed during the course, highlighting my proficiency in key concepts and tools.

## πŸ“–Table of Contents

- [Course Summary](#course-summary)
- [Skills Acquired](#skills-acquired)
- [Projects](#projects)
- [Project 1: Data Cleaning and Preparation](#project-1-data-cleaning-and-preparation)
- [Project 2: Data Visualization](#project-2-data-visualization)
- [Project 3: Exploratory Data Analysis](#project-3-exploratory-data-analysis)
- [Project 4: Data Storytelling](#project-4-data-storytelling)
- [Tools and Technologies](#tools-and-technologies)
- [Conclusion](#conclusion)
- [Contact Information](#contact-information)

## πŸ“šPortfolio Structure
```markdown
/MyPortfolio
β”‚
β”œβ”€β”€ /Data_Analysis_with_Spreadsheets_and_SQL
β”‚ β”œβ”€β”€ Commonly_Used_Spreadsheet_Tools.py
β”‚ β”œβ”€β”€ Data_Analysis_with_Spreadsheets.py
β”‚ β”œβ”€β”€ Explore_Data_Visually.py
β”‚ β”œβ”€β”€ Most_Profitable_Stores.twb
β”‚ β”œβ”€β”€ Overview_Of_Common_Chart_Types.py
β”‚ └── README.md # Project description and usage instructions
β”‚
β”œβ”€β”€ /Data_Analytics
β”‚ β”œβ”€β”€ Case_Study.py
β”‚ β”œβ”€β”€ Data_Analysis_vs_Data_Science.py
β”‚ β”œβ”€β”€ Data_Exploration_Checklist.py
β”‚ β”œβ”€β”€ Data_Scrubbing_Checklist.py
β”‚ β”œβ”€β”€ Datasources.py
β”‚ β”œβ”€β”€ Different_Types_Of_Models.py
β”‚ β”œβ”€β”€ Experience_the_Power_of_GenAI.py
β”‚ β”œβ”€β”€ Exploring_and_Modeling_Data.py
β”‚ β”œβ”€β”€ Feature_Engineering.py
β”‚ β”œβ”€β”€ Generative_AI_Overview.py
β”‚ β”œβ”€β”€ Generative_AI_Response.py
β”‚ β”œβ”€β”€ Key_Points_on_GenAI_in_Data_Analytics.py
β”‚ β”œβ”€β”€ OSEMN_Framework.py
β”‚ β”œβ”€β”€ OSEMN_Framework_for_Cat_and_Dog_Products.py
β”‚ β”œβ”€β”€ Obtaining_Data.py
β”‚ β”œβ”€β”€ Obtaining_and_Scrubbing_Data.py
β”‚ β”œβ”€β”€ Validity_Of_Data_Checklist.py
β”‚ β”œβ”€β”€ iNterpreting_Data.py
β”‚ β”œβ”€β”€ iNterpreting_Data_and_Storytelling.py
β”‚ └── README.md # Project description and usage instructions
β”‚
β”œβ”€β”€ /Data_Management
β”‚ β”œβ”€β”€ Big_Data_Management_Systems_Roundup.py
β”‚ β”œβ”€β”€ Compliance_Best_Practices.py
β”‚ β”œβ”€β”€ Data_Collection_Tool_Roundup.py
β”‚ β”œβ”€β”€ Data_Profiling_and_Validation_Tools_Roundup.py
β”‚ β”œβ”€β”€ Data_Storage_Formats.py
β”‚ β”œβ”€β”€ Data_Visualization_Tools_Roundup.py
β”‚ β”œβ”€β”€ Data_security_Fundamentals.py
β”‚ β”œβ”€β”€ Machine_Learning_Tools_Roundup.py
β”‚ β”œβ”€β”€ Storage_Solutions_Roundup.py
β”‚ β”œβ”€β”€ Storage_System_Roundup.py
β”‚ β”œβ”€β”€ Storage_Tools_Roundup.py
β”‚ └── Using_Data.py
β”‚
β”œβ”€β”€ /Python_Data_Analytics
β”‚ β”œβ”€β”€ /Jupyter_Notebooks
β”‚ β”‚ β”œβ”€β”€ .ipynb_checkpoints
β”‚ β”‚ β”œβ”€β”€ Aggregations.ipynb
β”‚ β”‚ β”œβ”€β”€ Basic_Exploration.ipynb
β”‚ β”‚ β”œβ”€β”€ Booleans_in_Python.ipynb
β”‚ β”‚ β”œβ”€β”€ Conditional_Statements.ipynb
β”‚ β”‚ β”œβ”€β”€ Creating_Explanatory_Visualizations.ipynb
β”‚ β”‚ β”œβ”€β”€ Creating_Visualizations.ipynb
β”‚ β”‚ β”œβ”€β”€ Dictionaries.ipynb
β”‚ β”‚ β”œβ”€β”€ Exploration_-_Basic_Statistics.ipynb
β”‚ β”‚ β”œβ”€β”€ Exploration_-_Filtering_Data.ipynb
β”‚ β”‚ β”œβ”€β”€ Exploring_With_Visualizations.ipynb
β”‚ β”‚ β”œβ”€β”€ Full_OSEMN.ipynb
β”‚ β”‚ β”œβ”€β”€ Introduction_to_Libraries.ipynb
β”‚ β”‚ β”œβ”€β”€ Lists_and_Tuples.ipynb
β”‚ β”‚ β”œβ”€β”€ Modeling_with_Python.ipynb
β”‚ β”‚ β”œβ”€β”€ Modifying_Values.ipynb
β”‚ β”‚ β”œβ”€β”€ Removing_Data.ipynb
β”‚ β”‚ β”œβ”€β”€ Selective_Subsets.ipynb
β”‚ β”‚ β”œβ”€β”€ Subsets_with_Pandas.ipynb
β”‚ β”‚ β”œβ”€β”€ Using_Pandas_and_Matplotlib_to_Create_Visualizations.ipynb
β”‚ β”‚ └── Variables_in_Python.ipynb
β”‚ └── README.md # Overview of Python data analytics projects
β”‚
β”œβ”€β”€ /Sample_Data
β”‚ β”œβ”€β”€ Activity_Dataset_Cleaned.xlsx
β”‚ β”œβ”€β”€ Activity_Dataset_Cleaning.xlsx
β”‚ β”œβ”€β”€ Home_Selling_Prices.xlsx
β”‚ β”œβ”€β”€ Website_Sales.xlsx
β”‚ └── README.md # Description of the datasets
β”‚
β”œβ”€β”€ /Statistics_Foundations
β”‚ β”œβ”€β”€ /Capstones_Modules
β”‚ β”‚ β”œβ”€β”€ 1_Getting_to_Know_the_Data
β”‚ β”‚ β”‚ β”œβ”€β”€ Datasets
β”‚ β”‚ β”‚ β”œβ”€β”€ Screenshots
β”‚ β”‚ β”œβ”€β”€ 2_Understanding_Your_Data_Samples
β”‚ β”‚ β”‚ β”œβ”€β”€ Datasets
β”‚ β”‚ β”‚ β”œβ”€β”€ Screenshots
β”‚ β”‚ β”œβ”€β”€ 3_Testing_Your_Hypothesis
β”‚ β”‚ β”‚ β”œβ”€β”€ Datasets
β”‚ β”‚ β”‚ β”œβ”€β”€ Screenshots
β”‚ β”‚ └── 4_Data_Modeling
β”‚ β”‚ β”œβ”€β”€ Datasets
β”‚ β”‚ β”œβ”€β”€ Screenshots
β”‚ └── README.md # Overview of statistics foundations projects
β”‚
β”œβ”€β”€ /Tableau
β”‚ β”œβ”€β”€ Age_and_Income_-_Cluster_Analysis.twb
β”‚ β”œβ”€β”€ Time_Series.twb
β”‚ └── README.md # Overview of Tableau projects
β”‚
β”œβ”€β”€ /Excel
β”‚ β”œβ”€β”€ AB_Testing.ipynb
β”‚ β”œβ”€β”€ Capstone_Week_4_-_Show_Me_the_Model.ipynb
β”‚ └── README.md # Overview of Excel projects
β”‚
β”œβ”€β”€ .gitignore
β”œβ”€β”€ CHANGELOG.md
β”œβ”€β”€ CONTRIBUTING.md
β”œβ”€β”€ LICENSE
β”œβ”€β”€ README.md # Main overview of the entire portfolio
└── requirements.txt

```

## πŸ“Course Summary

The Meta Data Analyst Professional Certificate program provided me with comprehensive training in various aspects of data analysis. I learned about πŸ“…data collection, 🧹cleaning, πŸ“Švisualization, and the importance of metadata in managing and analyzing data effectively.












## βš™οΈSkills Acquired

- Data cleaning and preprocessing
- Data visualization techniques
- Exploratory data analysis (EDA)
- Statistical analysis and interpretation
- Data storytelling and presentation
- Proficiency in tools such as `Excel`, `Python`, and `SQL`

## πŸ› οΈProjects

### Project 1: Data Cleaning and Preparation

- **Objective**: Clean and prepare a raw dataset for analysis.
- **Description**: I worked with a messy dataset containing missing values, duplicates, and inconsistencies. I applied techniques to clean the data, including:
- Removing duplicates
- Imputing missing values
- Normalizing data formats
- **Technologies Used**: `Python` (`Pandas`), `Excel`, `SQL`
- **Link**: [Getting to Know the Data](link-to-your-project)

### Project 2: Data Visualization

- **Objective**: Create compelling visualizations to convey insights from data.
- **Description**: I utilized visualization libraries to create informative charts and graphs that highlight key trends and patterns in the data.
- **Key Visualizations**:
- Bar charts
- Line graphs
- Heatmaps
- **Technologies Used**: `Python` (`Matplotlib`, `Seaborn`), `Tableau`
- **Link**: [Understanding Your Data Samples](link-to-your-project)

### Project 3: Exploratory Data Analysis

- **Objective**: Conduct a thorough exploratory data analysis on a given dataset.
- **Description**: I analyzed a dataset to uncover insights and relationships between variables. This involved:
- Descriptive statistics
- Correlation analysis
- Identifying outliers
- **Technologies Used**: `Python` (`Pandas`, `NumPy`), `Excel`, `SQL`
- **Link**: [Testing Your Hypothesis](link-to-your-project)

### Project 4: Data Storytelling

- **Objective**: Develop a narrative around data findings to present to stakeholders.
- **Description**: I created a presentation that tells a story using data visualizations and analyses, focusing on making insights accessible and actionable.
- **Key Components**:
- Storyboarding the presentation
- Creating engaging visuals
- Highlighting actionable insights
- **Technologies Used**: `PowerPoint`, `Tableau`
- **Link**: [Data Modeling](link-to-your-project)

## βš™οΈTools and Technologies

- **Programming Languages**: `Python`, `SQL`
- **Data Analysis Tools**: `Excel`, `Pandas`, `NumPy`
- **Data Visualization Tools**: `Matplotlib`, `Seaborn`, `Tableau`
- **Other Tools**: `PowerPoint`, `Jupyter Notebooks`

## Conclusion

Completing the Meta Data Analyst Professional Certificate has equipped me with the essential skills and knowledge to pursue a career in data analysis. I am excited to apply what I’ve learned in real-world scenarios and look forward to contributing to data-driven projects.

Feel free to reach out if you have any questions or would like to discuss my work further!

## Contact Information

- **Email**: [hire.willie.conway@gmail.com](mailto:hire.willie.conway@gmail.com)
- **GitHub**: [Willie-Conway](https://github.com/Willie-Conway)
- **LinkedIn**: [Willie Conway](https://www.linkedin.com/in/willieconway/)