Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/wiseodd/generative-models
Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow.
https://github.com/wiseodd/generative-models
gan generative-model machine-learning pytorch rbm restricted-boltzmann-machine tensorflow vae
Last synced: 3 days ago
JSON representation
Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow.
- Host: GitHub
- URL: https://github.com/wiseodd/generative-models
- Owner: wiseodd
- License: unlicense
- Created: 2016-12-07T11:28:16.000Z (about 8 years ago)
- Default Branch: master
- Last Pushed: 2024-03-24T20:38:46.000Z (9 months ago)
- Last Synced: 2024-12-11T16:06:16.574Z (10 days ago)
- Topics: gan, generative-model, machine-learning, pytorch, rbm, restricted-boltzmann-machine, tensorflow, vae
- Language: Python
- Homepage: http://wiseodd.github.io
- Size: 111 KB
- Stars: 7,349
- Watchers: 297
- Forks: 2,039
- Open Issues: 22
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-stem-academy - `code` - models** - Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow. (Artificial Intelligence & Data Science / Machine Learning & Neural Networks)
- really-awesome-gan - [Code
- awesome-GAN-papers - 8
- awesome-list - wiseodd/generative-models - Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow. (Machine Learning / JavaScript)
- really-awesome-gan - [Code
README
# Generative Models
Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow.
Also present here are RBM and Helmholtz Machine.## Note:
Generated samples will be stored in `GAN/{gan_model}/out` (or `VAE/{vae_model}/out`, etc) directory during training.## What's in it?
#### Generative Adversarial Nets (GAN)
1. [Vanilla GAN](https://arxiv.org/abs/1406.2661)
2. [Conditional GAN](https://arxiv.org/abs/1411.1784)
3. [InfoGAN](https://arxiv.org/abs/1606.03657)
4. [Wasserstein GAN](https://arxiv.org/abs/1701.07875)
5. [Mode Regularized GAN](https://arxiv.org/abs/1612.02136)
6. [Coupled GAN](https://arxiv.org/abs/1606.07536)
7. [Auxiliary Classifier GAN](https://arxiv.org/abs/1610.09585)
8. [Least Squares GAN](https://arxiv.org/abs/1611.04076v2)
9. [Boundary Seeking GAN](https://arxiv.org/abs/1702.08431)
10. [Energy Based GAN](https://arxiv.org/abs/1609.03126)
11. [f-GAN](https://arxiv.org/abs/1606.00709)
12. [Generative Adversarial Parallelization](https://arxiv.org/abs/1612.04021)
13. [DiscoGAN](https://arxiv.org/abs/1703.05192)
14. [Adversarial Feature Learning](https://arxiv.org/abs/1605.09782) & [Adversarially Learned Inference](https://arxiv.org/abs/1606.00704)
15. [Boundary Equilibrium GAN](https://arxiv.org/abs/1703.10717)
16. [Improved Training for Wasserstein GAN](https://arxiv.org/abs/1704.00028)
17. [DualGAN](https://arxiv.org/abs/1704.02510)
18. [MAGAN: Margin Adaptation for GAN](https://arxiv.org/abs/1704.03817)
19. [Softmax GAN](https://arxiv.org/abs/1704.06191)
20. [GibbsNet](https://papers.nips.cc/paper/7094-gibbsnet-iterative-adversarial-inference-for-deep-graphical-models.pdf)#### Variational Autoencoder (VAE)
1. [Vanilla VAE](https://arxiv.org/abs/1312.6114)
2. [Conditional VAE](https://arxiv.org/abs/1406.5298)
3. [Denoising VAE](https://arxiv.org/abs/1511.06406)
4. [Adversarial Autoencoder](https://arxiv.org/abs/1511.05644)
5. [Adversarial Variational Bayes](https://arxiv.org/abs/1701.04722)#### Restricted Boltzmann Machine (RBM)
1. [Binary RBM with Contrastive Divergence](http://www.cs.toronto.edu/~fritz/absps/cdmiguel.pdf)
2. [Binary RBM with Persistent Contrastive Divergence](http://www.cs.toronto.edu/~tijmen/pcd/pcd.pdf)#### Helmholtz Machine
1. [Binary Helmholtz Machine with Wake-Sleep Algorithm](http://www.cs.toronto.edu/~fritz/absps/ws.pdf)## Dependencies
1. Install miniconda
2. Do `conda env create`
3. Enter the env `source activate generative-models`
4. Install [Tensorflow](https://www.tensorflow.org/get_started/os_setup)
5. Install [Pytorch](https://github.com/pytorch/pytorch#installation)