Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/wkentaro/labelme
Image Polygonal Annotation with Python (polygon, rectangle, circle, line, point and image-level flag annotation).
https://github.com/wkentaro/labelme
annotations classification computer-vision deep-learning image-annotation instance-segmentation python semantic-segmentation video-annotation
Last synced: 4 months ago
JSON representation
Image Polygonal Annotation with Python (polygon, rectangle, circle, line, point and image-level flag annotation).
- Host: GitHub
- URL: https://github.com/wkentaro/labelme
- Owner: labelmeai
- License: other
- Created: 2016-05-09T12:30:26.000Z (almost 9 years ago)
- Default Branch: main
- Last Pushed: 2024-05-21T09:04:22.000Z (9 months ago)
- Last Synced: 2024-05-23T10:08:22.022Z (9 months ago)
- Topics: annotations, classification, computer-vision, deep-learning, image-annotation, instance-segmentation, python, semantic-segmentation, video-annotation
- Language: Python
- Homepage:
- Size: 44.6 MB
- Stars: 12,486
- Watchers: 149
- Forks: 3,273
- Open Issues: 115
-
Metadata Files:
- Readme: README.md
- Funding: .github/FUNDING.yml
- License: LICENSE
- Citation: CITATION.cff
Awesome Lists containing this project
- awesome-cv - labelme - level flag annotation) (Annotation Tools / Tags: Object Classification `[ObjCls]`, Object Detection `[ObjDet]`, Object Segmentation `[ObjSeg]`, General Library `[GenLib]`, Text Reading / Object Character Recognition `[OCR]`, Action Recognition `[ActRec]`, Object Tracking `[ObjTrk]`, Data Augmentation `[DatAug]`, Simultaneous Localization and Mapping `[SLAM]`, Outlier/Anomaly/Novelty Detection `[NvlDet]`, Content-based Image Retrieval `[CBIR]`, Image Enhancement `[ImgEnh]`, Aesthetic Assessment `[AesAss]`, Explainable Artificial Intelligence `[XAI]`, Text-to-Image Generation `[TexImg]`, Pose Estimation `[PosEst]`, Video Matting `[VidMat]`, Eye Tracking `[EyeTrk]`)
- awesome-object-detection-datasets - labelme - level flag annotation). (Summary)
- awesome-robotic-tooling - labelme - Image Polygonal Annotation with Python (polygon, rectangle, circle, line, point and image-level flag annotation). (Data Visualization and Mission Control / Annotation)
- awesome-data-annotation - labelme - - image/video (classification, polygon, geometric shapes) (Image / video / Open source)
- awesome-dataset-tools - labelme - Image Polygonal Annotation with Python (polygon, rectangle, circle, line, point and image-level flag annotation) (Labeling Tools / Images)
- StarryDivineSky - wkentaro/labelme
- awesome-yolo-object-detection - labelme - level flag annotation). (Applications)
- awesome-yolo-object-detection - labelme - level flag annotation). (Applications)
- awesome-image-tools - labelme
README
labelme
Image Polygonal Annotation with Python
![]()
## Description
Labelme is a graphical image annotation tool inspired by .
It is written in Python and uses Qt for its graphical interface.
![]()
![]()
![]()
![]()
![]()
VOC dataset example of instance segmentation.
![]()
![]()
![]()
Other examples (semantic segmentation, bbox detection, and classification).
![]()
![]()
![]()
Various primitives (polygon, rectangle, circle, line, and point).## Features
- [x] Image annotation for polygon, rectangle, circle, line and point. ([tutorial](examples/tutorial))
- [x] Image flag annotation for classification and cleaning. ([#166](https://github.com/labelmeai/labelme/pull/166))
- [x] Video annotation. ([video annotation](examples/video_annotation))
- [x] GUI customization (predefined labels / flags, auto-saving, label validation, etc). ([#144](https://github.com/labelmeai/labelme/pull/144))
- [x] Exporting VOC-format dataset for semantic/instance segmentation. ([semantic segmentation](examples/semantic_segmentation), [instance segmentation](examples/instance_segmentation))
- [x] Exporting COCO-format dataset for instance segmentation. ([instance segmentation](examples/instance_segmentation))## Starter Guide
If you're new to Labelme, you can get started with [Labelme Starter](https://labelme.io/starter) (FREE), which contains:
- **Installation guides** for all platforms: Windows, macOS, and Linux 💻
- **Step-by-step tutorials**: first annotation to editing, exporting, and integrating with other programs 📕
- **A compilation of valuable resources** for further exploration 🔗.## Installation
There are options:
- Platform agnostic installation: [Anaconda](#anaconda)
- Platform specific installation: [Ubuntu](#ubuntu), [macOS](#macos), [Windows](#windows)
- Pre-build binaries from [the release section](https://github.com/labelmeai/labelme/releases)### Anaconda
You need install [Anaconda](https://www.continuum.io/downloads), then run below:
```bash
# python3
conda create --name=labelme python=3
source activate labelme
# conda install -c conda-forge pyside2
# conda install pyqt
# pip install pyqt5 # pyqt5 can be installed via pip on python3
pip install labelme
# or you can install everything by conda command
# conda install labelme -c conda-forge
```### Ubuntu
```bash
sudo apt-get install labelme# or
sudo pip3 install labelme# or install standalone executable from:
# https://github.com/labelmeai/labelme/releases# or install from source
pip3 install git+https://github.com/labelmeai/labelme
```### macOS
```bash
brew install pyqt # maybe pyqt5
pip install labelme# or install standalone executable/app from:
# https://github.com/labelmeai/labelme/releases# or install from source
pip3 install git+https://github.com/labelmeai/labelme
```### Windows
Install [Anaconda](https://www.continuum.io/downloads), then in an Anaconda Prompt run:
```bash
conda create --name=labelme python=3
conda activate labelme
pip install labelme# or install standalone executable/app from:
# https://github.com/labelmeai/labelme/releases# or install from source
pip3 install git+https://github.com/labelmeai/labelme
```## Usage
Run `labelme --help` for detail.
The annotations are saved as a [JSON](http://www.json.org/) file.```bash
labelme # just open gui# tutorial (single image example)
cd examples/tutorial
labelme apc2016_obj3.jpg # specify image file
labelme apc2016_obj3.jpg -O apc2016_obj3.json # close window after the save
labelme apc2016_obj3.jpg --nodata # not include image data but relative image path in JSON file
labelme apc2016_obj3.jpg \
--labels highland_6539_self_stick_notes,mead_index_cards,kong_air_dog_squeakair_tennis_ball # specify label list# semantic segmentation example
cd examples/semantic_segmentation
labelme data_annotated/ # Open directory to annotate all images in it
labelme data_annotated/ --labels labels.txt # specify label list with a file
```### Command Line Arguments
- `--output` specifies the location that annotations will be written to. If the location ends with .json, a single annotation will be written to this file. Only one image can be annotated if a location is specified with .json. If the location does not end with .json, the program will assume it is a directory. Annotations will be stored in this directory with a name that corresponds to the image that the annotation was made on.
- The first time you run labelme, it will create a config file in `~/.labelmerc`. You can edit this file and the changes will be applied the next time that you launch labelme. If you would prefer to use a config file from another location, you can specify this file with the `--config` flag.
- Without the `--nosortlabels` flag, the program will list labels in alphabetical order. When the program is run with this flag, it will display labels in the order that they are provided.
- Flags are assigned to an entire image. [Example](examples/classification)
- Labels are assigned to a single polygon. [Example](examples/bbox_detection)### FAQ
- **How to convert JSON file to numpy array?** See [examples/tutorial](examples/tutorial#convert-to-dataset).
- **How to load label PNG file?** See [examples/tutorial](examples/tutorial#how-to-load-label-png-file).
- **How to get annotations for semantic segmentation?** See [examples/semantic_segmentation](examples/semantic_segmentation).
- **How to get annotations for instance segmentation?** See [examples/instance_segmentation](examples/instance_segmentation).## Examples
* [Image Classification](examples/classification)
* [Bounding Box Detection](examples/bbox_detection)
* [Semantic Segmentation](examples/semantic_segmentation)
* [Instance Segmentation](examples/instance_segmentation)
* [Video Annotation](examples/video_annotation)## How to develop
```bash
git clone https://github.com/labelmeai/labelme.git
cd labelme# Install anaconda3 and labelme
curl -L https://github.com/wkentaro/dotfiles/raw/main/local/bin/install_anaconda3.sh | bash -s .
source .anaconda3/bin/activate
pip install -e .
```### How to build standalone executable
Below shows how to build the standalone executable on macOS, Linux and Windows.
```bash
# Setup conda
conda create --name labelme python=3.9
conda activate labelme# Build the standalone executable
pip install .
pip install 'matplotlib<3.3'
pip install pyinstaller
pyinstaller labelme.spec
dist/labelme --version
```### How to contribute
Make sure below test passes on your environment.
See `.github/workflows/ci.yml` for more detail.```bash
pip install -r requirements-dev.txtruff format --check # `ruff format` to auto-fix
ruff check # `ruff check --fix` to auto-fix
MPLBACKEND='agg' pytest -vsx tests/
```## Acknowledgement
This repo is the fork of [mpitid/pylabelme](https://github.com/mpitid/pylabelme).