An open API service indexing awesome lists of open source software.

https://github.com/wkentaro/osam

Get up and running with SAM, EfficientSAM, YOLO-World, and other promptable vision models locally.
https://github.com/wkentaro/osam

computer-vision deep-learning foundation-models onnx segment-anything

Last synced: 6 months ago
JSON representation

Get up and running with SAM, EfficientSAM, YOLO-World, and other promptable vision models locally.

Awesome Lists containing this project

README

          


logo

Osam



Get up and running with promptable vision models locally.








*Osam* (/oʊˈsɑm/) is a tool to run open-source promptable vision models locally
(inspired by [Ollama](https://github.com/ollama/ollama)).

*Osam* provides:

- **Promptable Vision Models** - Segment Anything Model (SAM), EfficientSAM, YOLO-World;
- **Local APIs** - CLI & Python & HTTP interface;
- **Customization** - Host custom vision models.

## Installation

### Pip


```bash
pip install osam
```

**For `osam serve`**:

```bash
pip install osam[serve]
```

## Quickstart

To run with EfficientSAM:

```bash
osam run efficientsam --image
```

To run with YOLO-World:

```bash
osam run yoloworld --image
```

## Model library

Here are models that can be downloaded:

| Model | Parameters | Size | Download |
|-------------------|------------|-------|------------------------------|
| SAM 100M | 94M | 100MB | `osam run sam:100m` |
| SAM 300M | 313M | 310MB | `osam run sam:300m` |
| SAM 600M | 642M | 630MB | `osam run sam` |
| SAM2 Tiny | 39M | 150MB | `osam run sam2:tiny` |
| SAM2 Small | 46M | 170MB | `osam run sam2:small` |
| SAM2 BasePlus | 82M | 300MB | `osam run sam2` |
| SAM2 Large | 227M | 870MB | `osam run sam2:large` |
| EfficientSAM 10M | 10M | 40MB | `osam run efficientsam:10m` |
| EfficientSAM 30M | 26M | 100MB | `osam run efficientsam` |
| YOLO-World XL | 168M | 640MB | `osam run yoloworld` |

PS. `sam`, `efficientsam` is equivalent to `sam:latest`, `efficientsam:latest`.

## Usage

### CLI

```bash
# Run a model with an image
osam run efficientsam --image examples/_images/dogs.jpg > output.png

# Get a JSON output
osam run efficientsam --image examples/_images/dogs.jpg --json
# {"model": "efficientsam", "mask": "..."}

# Give a prompt
osam run efficientsam --image examples/_images/dogs.jpg \
--prompt '{"points": [[1439, 504], [1439, 1289]], "point_labels": [1, 1]}' \
> efficientsam.png
osam run yoloworld --image examples/_images/dogs.jpg --prompt '{"texts": ["dog"]}' \
> yoloworld.png
```


Input and output images ('dogs.jpg', 'efficientsam.png', 'yoloworld.png').

### Python

```python
import osam.apis
import osam.types

request = osam.types.GenerateRequest(
model="efficientsam",
image=np.asarray(PIL.Image.open("examples/_images/dogs.jpg")),
prompt=osam.types.Prompt(points=[[1439, 504], [1439, 1289]], point_labels=[1, 1]),
)
response = osam.apis.generate(request=request)
PIL.Image.fromarray(response.mask).save("mask.png")
```

Input and output images ('dogs.jpg', 'mask.png').

### HTTP

```bash
# pip install osam[serve] # required for `osam serve`

# Get up the server
osam serve

# POST request
curl 127.0.0.1:11368/api/generate -X POST \
-H "Content-Type: application/json" \
-d "{\"model\": \"efficientsam\", \"image\": \"$(cat examples/_images/dogs.jpg | base64)\"}" \
| jq -r .mask | base64 --decode > mask.png
```