Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/wkentaro/safepicking
SafePicking: Learning Safe Object Extraction via Object-Level Mapping, ICRA 2022
https://github.com/wkentaro/safepicking
artificial-intelligence computer-vision deep-learning machine-learning reinforcement-learning robotics ros
Last synced: 7 days ago
JSON representation
SafePicking: Learning Safe Object Extraction via Object-Level Mapping, ICRA 2022
- Host: GitHub
- URL: https://github.com/wkentaro/safepicking
- Owner: wkentaro
- License: other
- Created: 2022-02-10T15:49:21.000Z (almost 3 years ago)
- Default Branch: main
- Last Pushed: 2022-03-16T12:29:01.000Z (over 2 years ago)
- Last Synced: 2024-11-01T10:35:11.607Z (14 days ago)
- Topics: artificial-intelligence, computer-vision, deep-learning, machine-learning, reinforcement-learning, robotics, ros
- Language: Python
- Homepage: https://safepicking.wkentaro.com
- Size: 38.5 MB
- Stars: 53
- Watchers: 4
- Forks: 2
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
SafePicking
Learning Safe Object Extraction via Object-Level Mapping
Kentaro Wada,
Stephen James,
Andrew J. Davison
Dyson Robotics Laboratory,
Imperial College London
IEEE International Conference on Robotics and Automation (ICRA), 2022
Installation |
Usage |
Paper |
Video |
Webpage
---
## Installation
### Python project only
```bash
make installsource .anaconda3/bin/activate
./checks/check_motion_planning.py
```### ROS project
- `robot-agent`: A computer with CUDA and a GPU installed for visual processing.
- `robot-node`: A computer with a real-time OS for a Panda robot.#### @robot-agent
```bash
make install
source .anaconda3/bin/activatecd ros/
make install
source devel/setup.sh
```#### @robot-node
```
cd ros/
source /opt/ros/noetic/setup.shcatkin build morefusion_panda
rosrun morefusion_panda create_udev_rules.shcatkin build safepicking_ros
```## Usage
### Training & Inference
```bash
cd examples/picking/# download pile files at ~/.cache/safepicking/pile_generation/
./download_piles.py./train.py --model fusion_net --noise
./learned.py logs/XXX/weights/YYY# use pretrained model
./download_pretrained_models.py# inference in the test environments: ~/.cache/safepicking/pile_generation/00009000 - 00009999.pkl
./learned.py --weight-dir logs/20210709_005731-fusion_net-noise/weights/84500 \
~/.cache/safepicking/pile_generation/00009000.pkl
```
### Robotic demonstration
```bash
robot-node $ roslaunch safepicking_ros panda_control.launchrobot-agent $ roslaunch safepicking_ros setup.launch
robot-agent $ rosrun safepicking_ros safepicking_task_interface.py
>>> self.run([YcbObject.PITCHER])
```## Citation
```
@inproceedings{Wada:etal:ICRA2022a,
title={{SafePicking}: Learning Safe Object Extraction via Object-Level Mapping},
author={Kentaro Wada and Stephen James and Andrew J. Davison},
booktitle={IEEE International Conference on Robotics and Automation (ICRA)},
year={2022},
}
```