https://github.com/wm-Githuber/AFCF3D-Net
https://github.com/wm-Githuber/AFCF3D-Net
Last synced: 5 months ago
JSON representation
- Host: GitHub
- URL: https://github.com/wm-Githuber/AFCF3D-Net
- Owner: wm-Githuber
- Created: 2022-12-19T11:58:39.000Z (over 2 years ago)
- Default Branch: main
- Last Pushed: 2024-02-16T01:58:40.000Z (about 1 year ago)
- Last Synced: 2024-08-03T19:09:04.690Z (9 months ago)
- Language: Python
- Size: 3.46 MB
- Stars: 16
- Watchers: 1
- Forks: 1
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome-remote-sensing-change-detection - Ye Y, Wang M, Zhou L, et al. Adjacent-level feature cross-fusion with 3D CNN for remote sensing image change detection
README
# Adjacent-Level Feature Cross-Fusion with 3-D CNN for Remote Sensing Image Change Detection
Here, we provide the official pytorch implementation of the paper "Adjacent-Level Feature Cross-Fusion with 3-D CNN for Remote Sensing Image Change Detection".
# Requirements
* python 3.9.12
* numpy 1.23.1
* pytorch 1.12.1
* torchvision 0.13.1# Dataset Preparation
## Data Structure
"""
Change detection data set with pixel-level binary labels;
├─A
├─B
├─label
└─list
├─train.txt
├─val.txt
├─test.txt
"""
A: Images of T1 time
B: Images of T2 time
label: label maps
list: contrains train.txt, val.txt, and test.txt. each fild records the name of image paris (XXX.png).## Data Download
WHU-CD: https://study.rsgis.whu.edu.cn/pages/download/building_dataset.html
LEVIR-CD: https://justchenhao.github.io/LEVIR/
SYSU-CD: https://github.com/liumency/SYSU-CD# Training and Testing
train.py
Test.py# Quantitative Results
# Qualitative Results
# Licence
The code is released for non-commercial and research purposes only. For commercial purposes, please contact the authors.# Citation
If you find this work interesting in your research, please cite our paper as follow:
@ARTICLE{YeCD,
author={Ye, Yuanxin and Wang, Mengmeng and Zhou, Liang and Lei, Guangyang and Fan, Jianwei and Qin, Yao},
journal={IEEE Transactions on Geoscience and Remote Sensing},
title={Adjacent-Level Feature Cross-Fusion With 3-D CNN for Remote Sensing Image Change Detection},
year={2023},
volume={61},
number={},
pages={1-14},
doi={10.1109/TGRS.2023.3305499}}