Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/wm-Githuber/AFCF3D-Net


https://github.com/wm-Githuber/AFCF3D-Net

Last synced: 3 months ago
JSON representation

Awesome Lists containing this project

README

        

# Adjacent-Level Feature Cross-Fusion with 3-D CNN for Remote Sensing Image Change Detection

Here, we provide the official pytorch implementation of the paper "Adjacent-Level Feature Cross-Fusion with 3-D CNN for Remote Sensing Image Change Detection".
![Architecture](https://github.com/wm-Githuber/AFCF3D-Net/assets/66511993/9c2681a4-a582-4b73-8133-55f2c5da5dc9)

# Requirements
* python 3.9.12
* numpy 1.23.1
* pytorch 1.12.1
* torchvision 0.13.1

# Dataset Preparation
## Data Structure
"""
Change detection data set with pixel-level binary labels;
├─A
├─B
├─label
└─list
  ├─train.txt
  ├─val.txt
  ├─test.txt
"""
A: Images of T1 time
B: Images of T2 time
label: label maps
list: contrains train.txt, val.txt, and test.txt. each fild records the name of image paris (XXX.png).

## Data Download
WHU-CD: https://study.rsgis.whu.edu.cn/pages/download/building_dataset.html
LEVIR-CD: https://justchenhao.github.io/LEVIR/
SYSU-CD: https://github.com/liumency/SYSU-CD

# Training and Testing
train.py
Test.py

# Quantitative Results
![image](https://github.com/wm-Githuber/AFCF3D-Net/assets/66511993/7612d847-8ccb-422d-9fee-3b567b8082a4)

# Qualitative Results
![SYSU-result](https://user-images.githubusercontent.com/66511993/210714033-e006d556-97d1-47e9-8423-3de7a983f385.png)

# Licence
The code is released for non-commercial and research purposes only. For commercial purposes, please contact the authors.

# Citation
If you find this work interesting in your research, please cite our paper as follow:
@ARTICLE{YeCD,
author={Ye, Yuanxin and Wang, Mengmeng and Zhou, Liang and Lei, Guangyang and Fan, Jianwei and Qin, Yao},
journal={IEEE Transactions on Geoscience and Remote Sensing},
title={Adjacent-Level Feature Cross-Fusion With 3-D CNN for Remote Sensing Image Change Detection},
year={2023},
volume={61},
number={},
pages={1-14},
doi={10.1109/TGRS.2023.3305499}}