Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/wmcnally/kapao

KAPAO is an efficient single-stage human pose estimation model that detects keypoints and poses as objects and fuses the detections to predict human poses.
https://github.com/wmcnally/kapao

deep-learning human-pose-estimation pose-estimation pytorch yolo

Last synced: 2 months ago
JSON representation

KAPAO is an efficient single-stage human pose estimation model that detects keypoints and poses as objects and fuses the detections to predict human poses.

Awesome Lists containing this project

README

        

# KAPAO (Keypoints and Poses as Objects)

[Accepted to ECCV 2022](https://arxiv.org/abs/2111.08557)

KAPAO is an efficient single-stage multi-person human pose estimation method that models
**k**eypoints **a**nd **p**oses **a**s **o**bjects within a dense anchor-based detection framework.
KAPAO simultaneously detects _pose objects_ and _keypoint objects_ and fuses the detections to predict human poses:

![alt text](./res/kapao_inference.gif)

When not using test-time augmentation (TTA), KAPAO is much faster and more accurate than
previous single-stage methods like
[DEKR](https://github.com/HRNet/DEKR),
[HigherHRNet](https://github.com/HRNet/HigherHRNet-Human-Pose-Estimation),
[HigherHRNet + SWAHR](https://github.com/greatlog/SWAHR-HumanPose), and
[CenterGroup](https://github.com/dvl-tum/center-group):

![alt text](./res/accuracy_latency.png)

This repository contains the official PyTorch implementation for the paper:

Rethinking Keypoint Representations: Modeling Keypoints and Poses as Objects for Multi-Person Human Pose Estimation.

Our code was forked from ultralytics/yolov5 at commit [5487451](https://github.com/ultralytics/yolov5/tree/5487451).

### Setup
1. If you haven't already, [install Anaconda or Miniconda](https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html).
2. Create a new conda environment with Python 3.6: `$ conda create -n kapao python=3.6`.
3. Activate the environment: `$ conda activate kapao`
4. Clone this repo: `$ git clone https://github.com/wmcnally/kapao.git`
5. Install the dependencies: `$ cd kapao && pip install -r requirements.txt`
6. Download the trained models: `$ python data/scripts/download_models.py`

## Inference Demos

**Note:** FPS calculations include **all processing** (i.e., including image loading, resizing, inference, plotting / tracking, etc.).
See script arguments for inference options.

---

#### Static Image

To generate the four images in the GIF above:
1. `$ python demos/image.py --bbox`
2. `$ python demos/image.py --bbox --pose --face --no-kp-dets`
3. `$ python demos/image.py --bbox --pose --face --no-kp-dets --kp-bbox`
4. `$ python demos/image.py --pose --face`

#### Shuffling Video
KAPAO runs fastest on low resolution video with few people in the frame. This demo runs KAPAO-S on a single-person 480p dance video using an input size of 1024.
The inference speed is **~9.5 FPS** on our CPU, and **~60 FPS** on our TITAN Xp.

**CPU inference:**

![alt text](./res/yBZ0Y2t0ceo_480p_kapao_s_coco_cpu.gif)

To display the results in real-time:

`$ python demos/video.py --face --display`

To create the GIF above:

`$ python demos/video.py --face --device cpu --gif`

**CPU specs:**

Intel Core i7-8700K

16GB DDR4 3000MHz

Samsung 970 Pro M.2 NVMe SSD

---

#### Flash Mob Video
This demo runs KAPAO-S on a 720p flash mob video using an input size of 1280.

**GPU inference:**

![alt text](./res/2DiQUX11YaY_720p_kapao_s_coco_gpu.gif)

To display the results in real-time:

`$ python demos/video.py --yt-id 2DiQUX11YaY --tag 136 --imgsz 1280 --color 255 0 255 --start 188 --end 196 --display`

To create the GIF above:

`$ python demos/video.py --yt-id 2DiQUX11YaY --tag 136 --imgsz 1280 --color 255 0 255 --start 188 --end 196 --gif`

---

#### Red Light Green Light
This demo runs KAPAO-L on a 480p clip from the TV show _Squid Game_ using an input size of 1024.
The plotted poses constitute keypoint objects only.

**GPU inference:**

![alt text](./res/nrchfeybHmw_480p_kapao_l_coco_gpu.gif)

To display the results in real-time:

`$ python demos/video.py --yt-id nrchfeybHmw --imgsz 1024 --weights kapao_l_coco.pt --conf-thres-kp 0.01 --kp-obj --face --start 56 --end 72 --display`

To create the GIF above:

`$ python demos/video.py --yt-id nrchfeybHmw --imgsz 1024 --weights kapao_l_coco.pt --conf-thres-kp 0.01 --kp-obj --face --start 56 --end 72 --gif`

---

#### Squash Video
This demo runs KAPAO-S on a 1080p slow motion squash video. It uses a simple player tracking algorithm based on the frame-to-frame pose differences.

**GPU inference:**

![alt text](./res/squash_inference_kapao_s_coco.gif)

To display the inference results in real-time:

`$ python demos/squash.py --display --fps`

To create the GIF above:

`$ python demos/squash.py --start 42 --end 50 --gif --fps`

---

#### Depth Video
Pose objects generalize well and can even be detected in depth video.
Here KAPAO-S was run on a depth video from a [fencing action recognition dataset](https://ieeexplore.ieee.org/abstract/document/8076041?casa_token=Zvm7dLIr1rYAAAAA:KrqtVl3NXrJZn05Eb4KGMio-18VPHc3uyDJZSiNJyI7f7oHQ5V2iwB7bK4mCJCmN83NrRl4P).

![alt text](./res/2016-01-04_21-33-35_Depth_kapao_s_coco_gpu.gif)

The depth video above can be downloaded directly from [here](https://drive.google.com/file/d/1n4so5WN6snyCYxeUk4xX1glADqQuitXP/view?usp=sharing).
To create the GIF above:

`$ python demos/video.py -p 2016-01-04_21-33-35_Depth.avi --face --start 0 --end -1 --gif --gif-size 480 360`

---

#### Web Demo
A web demo was integrated to [Huggingface Spaces](https://huggingface.co/spaces) with [Gradio](https://github.com/gradio-app/gradio) (credit to [@AK391](https://github.com/AK391)).
It uses KAPAO-S to run CPU inference on short video clips.

## COCO Experiments
Download the COCO dataset: `$ sh data/scripts/get_coco_kp.sh`

### Validation (without TTA)
- KAPAO-S (63.0 AP): `$ python val.py --rect`
- KAPAO-M (68.5 AP): `$ python val.py --rect --weights kapao_m_coco.pt`
- KAPAO-L (70.6 AP): `$ python val.py --rect --weights kapao_l_coco.pt`

### Validation (with TTA)
- KAPAO-S (64.3 AP): `$ python val.py --scales 0.8 1 1.2 --flips -1 3 -1`
- KAPAO-M (69.6 AP): `$ python val.py --weights kapao_m_coco.pt \ `

`--scales 0.8 1 1.2 --flips -1 3 -1`
- KAPAO-L (71.6 AP): `$ python val.py --weights kapao_l_coco.pt \ `

`--scales 0.8 1 1.2 --flips -1 3 -1`

### Testing
- KAPAO-S (63.8 AP): `$ python val.py --scales 0.8 1 1.2 --flips -1 3 -1 --task test`
- KAPAO-M (68.8 AP): `$ python val.py --weights kapao_m_coco.pt \ `

`--scales 0.8 1 1.2 --flips -1 3 -1 --task test`
- KAPAO-L (70.3 AP): `$ python val.py --weights kapao_l_coco.pt \ `

`--scales 0.8 1 1.2 --flips -1 3 -1 --task test`

### Training
The following commands were used to train the KAPAO models on 4 V100s with 32GB memory each.

KAPAO-S:
```
python -m torch.distributed.launch --nproc_per_node 4 train.py \
--img 1280 \
--batch 128 \
--epochs 500 \
--data data/coco-kp.yaml \
--hyp data/hyps/hyp.kp-p6.yaml \
--val-scales 1 \
--val-flips -1 \
--weights yolov5s6.pt \
--project runs/s_e500 \
--name train \
--workers 128
```

KAPAO-M:
```
python train.py \
--img 1280 \
--batch 72 \
--epochs 500 \
--data data/coco-kp.yaml \
--hyp data/hyps/hyp.kp-p6.yaml \
--val-scales 1 \
--val-flips -1 \
--weights yolov5m6.pt \
--project runs/m_e500 \
--name train \
--workers 128
```

KAPAO-L:
```
python train.py \
--img 1280 \
--batch 48 \
--epochs 500 \
--data data/coco-kp.yaml \
--hyp data/hyps/hyp.kp-p6.yaml \
--val-scales 1 \
--val-flips -1 \
--weights yolov5l6.pt \
--project runs/l_e500 \
--name train \
--workers 128
```

**Note:** [DDP](https://pytorch.org/tutorials/intermediate/ddp_tutorial.html) is usually recommended but we found training was less stable for KAPAO-M/L using DDP. We are investigating this issue.

## CrowdPose Experiments
- Install the [CrowdPose API](https://github.com/Jeff-sjtu/CrowdPose/tree/master/crowdpose-api) to your conda environment:

`$ cd .. && git clone https://github.com/Jeff-sjtu/CrowdPose.git`

`$ cd CrowdPose/crowdpose-api/PythonAPI && sh install.sh && cd ../../../kapao`
- Download the CrowdPose dataset: `$ sh data/scripts/get_crowdpose.sh`

### Testing
- KAPAO-S (63.8 AP): `$ python val.py --data crowdpose.yaml \ `

`--weights kapao_s_crowdpose.pt --scales 0.8 1 1.2 --flips -1 3 -1`
- KAPAO-M (67.1 AP): `$ python val.py --data crowdpose.yaml \ `

`--weights kapao_m_crowdpose.pt --scales 0.8 1 1.2 --flips -1 3 -1`
- KAPAO-L (68.9 AP): `$ python val.py --data crowdpose.yaml \ `

`--weights kapao_l_crowdpose.pt --scales 0.8 1 1.2 --flips -1 3 -1`

### Training
The following commands were used to train the KAPAO models on 4 V100s with 32GB memory each.
Training was performed on the `trainval` split with no validation.
The test results above were generated using the last model checkpoint.

KAPAO-S:
```
python -m torch.distributed.launch --nproc_per_node 4 train.py \
--img 1280 \
--batch 128 \
--epochs 300 \
--data data/crowdpose.yaml \
--hyp data/hyps/hyp.kp-p6.yaml \
--val-scales 1 \
--val-flips -1 \
--weights yolov5s6.pt \
--project runs/cp_s_e300 \
--name train \
--workers 128 \
--noval
```
KAPAO-M:
```
python train.py \
--img 1280 \
--batch 72 \
--epochs 300 \
--data data/crowdpose.yaml \
--hyp data/hyps/hyp.kp-p6.yaml \
--val-scales 1 \
--val-flips -1 \
--weights yolov5m6.pt \
--project runs/cp_m_e300 \
--name train \
--workers 128 \
--noval
```
KAPAO-L:
```
python train.py \
--img 1280 \
--batch 48 \
--epochs 300 \
--data data/crowdpose.yaml \
--hyp data/hyps/hyp.kp-p6.yaml \
--val-scales 1 \
--val-flips -1 \
--weights yolov5l6.pt \
--project runs/cp_l_e300 \
--name train \
--workers 128 \
--noval
```

## Acknowledgements
This work was supported in part by Compute Canada, the Canada Research Chairs Program,
the Natural Sciences and Engineering Research Council of Canada,
a Microsoft Azure Grant, and an NVIDIA Hardware Grant.

If you find this repo is helpful in your research, please cite our paper:
```
@article{mcnally2021kapao,
title={Rethinking Keypoint Representations: Modeling Keypoints and Poses as Objects for Multi-Person Human Pose Estimation},
author={McNally, William and Vats, Kanav and Wong, Alexander and McPhee, John},
journal={arXiv preprint arXiv:2111.08557},
year={2021}
}
```
Please also consider citing our previous works:
```
@inproceedings{mcnally2021deepdarts,
title={DeepDarts: Modeling Keypoints as Objects for Automatic Scorekeeping in Darts using a Single Camera},
author={McNally, William and Walters, Pascale and Vats, Kanav and Wong, Alexander and McPhee, John},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={4547--4556},
year={2021}
}

@article{mcnally2021evopose2d,
title={EvoPose2D: Pushing the Boundaries of 2D Human Pose Estimation Using Accelerated Neuroevolution With Weight Transfer},
author={McNally, William and Vats, Kanav and Wong, Alexander and McPhee, John},
journal={IEEE Access},
volume={9},
pages={139403--139414},
year={2021},
publisher={IEEE}
}
```