Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/woctezuma/steam-stylegan2-ada

Train a StyleGAN2-ADA model on Colaboratory to generate Steam banners.
https://github.com/woctezuma/steam-stylegan2-ada

colab colab-notebook colaboratory gan generative-adversarial-network google-colab google-colab-notebook google-colaboratory steam steam-api steam-data steam-game steam-games steam-gan steam-pics steam-store stylegan stylegan-model stylegan2 stylegan2-ada

Last synced: about 2 months ago
JSON representation

Train a StyleGAN2-ADA model on Colaboratory to generate Steam banners.

Awesome Lists containing this project

README

        

# Steam StyleGAN2-ADA

The goal of this [Colab][colab-website] notebook is to capture the distribution of Steam banners with a StyleGAN2-ADA model.

## Usage

- Acquire the data, e.g. as a snapshot called `256x256.zip` in [my data repository][data-repository],
- Run [`StyleGAN2_ADA_training.ipynb`][colab-notebook-training] to train a StyleGAN2-ADA model from scratch.
[![Open In Colab][colab-badge]][colab-notebook-training]
- Run [`StyleGAN2_ADA_image_sampling.ipynb`][colab-notebook-sampling] to generate images with a trained StyleGAN2-ADA model,
[![Open In Colab][colab-badge]][colab-notebook-sampling]
- To automatically resume training from the latest checkpoint, you will have to use [my fork][stylegan2-ada-fork] of StyleGAN2-ADA.

## Data

The dataset consists of 14k Steam banners with RGB channels and resized from 300x450 to 256x256 resolution.

Images were downloaded with [`download_steam_banners.ipynb`][download_steam_banners].
[![Open In Colab][colab-badge]][download_steam_banners]

Images were then filtered (duplicates, outliers, etc.) with [`remove_duplicates.ipynb`][filter_steam_banners].
[![Open In Colab][colab-badge]][filter_steam_banners]

## References

- DCGAN:
- [Radford, Alec, et al. *Unsupervised Representation learning with Deep Convolutional GAN*. ICLR 2016.][dcgan-paper]
- [Official implementation][dcgan-official-repository]
- [Application to Steam banners][dcgan-applied-to-steam-banners]
- StyleGAN:
- [Karras, Tero, et al. *A Style-Based Generator Architecture for Generative Adversarial Networks*. CVPR 2019.][stylegan1-paper]
- [Official implementation][stylegan1-official-repository]
- [Application to Steam banners][stylegan1-applied-to-steam-banners]
- StyleGAN2:
- [Karras, Tero, et al. *Analyzing and Improving the Image Quality of StyleGAN*. CVPR 2020.][stylegan2-paper]
- [Official implementation][stylegan2-official-repository]
- [Application to Steam banners][stylegan2-applied-to-steam-banners]
- StyleGAN2-ADA:
- [Karras, Tero, et al. *Training generative adversarial networks with limited data*. NeurIPS 2020.][stylegan2-ada-paper]
- Official implementations: [TensorFlow][stylegan2-ada-official-repository] and [PyTorch][stylegan2-ada-pytorch-repository]
- [Application to Steam banners][stylegan2-ada-applied-to-steam-banners]

[download_steam_banners]:
[filter_steam_banners]:

[colab-website]:
[colab-notebook-training]:
[colab-notebook-sampling]:
[colab-badge]:

[data-repository]:
[stylegan2-ada-fork]:

[dcgan-paper]:
[stylegan1-paper]:
[stylegan2-paper]:
[stylegan2-ada-paper]:

[dcgan-official-repository]:
[stylegan1-official-repository]:
[stylegan2-official-repository]:
[stylegan2-ada-official-repository]:
[stylegan2-ada-pytorch-repository]:

[dcgan-applied-to-steam-banners]:
[stylegan1-applied-to-steam-banners]:
[stylegan2-applied-to-steam-banners]:
[stylegan2-ada-applied-to-steam-banners]: