Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/woctezuma/steam-stylegan2-ada-pytorch

Train a StyleGAN2-ADA (PyTorch) model on Colab to generate Steam banners.
https://github.com/woctezuma/steam-stylegan2-ada-pytorch

colab colab-notebook colaboratory gan generative-adversarial-network google-colab google-colab-notebook google-colaboratory pytorch steam steam-data steam-game steam-games steam-gan steam-store stylegan stylegan-model stylegan2 stylegan2-ada stylegan2-ada-pytorch

Last synced: about 2 months ago
JSON representation

Train a StyleGAN2-ADA (PyTorch) model on Colab to generate Steam banners.

Awesome Lists containing this project

README

        

# Steam StyleGAN2-ADA (PyTorch)

The goal of this repository is to capture the distribution of Steam banners with a StyleGAN2-ADA model (PyTorch).

![Target A][target-A]![Projection A][projection-A]
![Target B][target-B]![Projection B][projection-B]

Progression videos of the projection of Steam banners ([*Dog Trainer*][store-link-A] and [*My UnReal pet*][store-link-B]) with a network pre-trained by Nvidia on the `LSUN DOG` dataset.

## Data

The [`Steam-OneFace`][steam-oneface] dataset,
obtained with the `retinaface` face detection module:
- consists of 2.5k Steam banners (256x256 resolution) which should all feature exactly one face,
- can be downloaded (74 MB) with the following commands:
```bash
!gdown --id 1-0Nk7H6Cn3Nt60EdHG_NWSA8ohi2oBqr
!tar xf steam-oneface-lr_with_retinaface.tar.gz
```

## Usage

- Run [`training.ipynb`][colab-notebook-training] to train a model from scratch,
[![Open In Colab][colab-badge]][colab-notebook-training]
- Run [`image_sampling.ipynb`][colab-notebook-sampling] to generate images with a trained model,
[![Open In Colab][colab-badge]][colab-notebook-sampling]
- To automatically resume training from the latest checkpoint, use [my fork][stylegan2-ada-pytorch-fork] of StyleGAN2-ADA (PyTorch).

## References

- [Karras, Tero, et al. *Training generative adversarial networks with limited data*. NeurIPS 2020][stylegan2-ada-paper],
- [Official implementation (PyTorch)][stylegan2-ada-pytorch-repository],
- Application to Steam banners using the [TensorFlow implementation][stylegan2-ada-applied-to-steam-banners].

[target-A]:
[projection-A]:
[store-link-A]:

[target-B]:
[projection-B]:
[store-link-B]:

[steam-oneface]:

[colab-notebook-training]:
[colab-notebook-sampling]:
[colab-badge]:
[stylegan2-ada-pytorch-fork]:

[stylegan2-ada-paper]:
[stylegan2-ada-pytorch-repository]:
[stylegan2-ada-applied-to-steam-banners]: