Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/wogong/pytorch-dann
A PyTorch implementation for Unsupervised Domain Adaptation by Backpropagation
https://github.com/wogong/pytorch-dann
deep-learning domain-adaptation generative-adversarial-network pytorch
Last synced: 3 months ago
JSON representation
A PyTorch implementation for Unsupervised Domain Adaptation by Backpropagation
- Host: GitHub
- URL: https://github.com/wogong/pytorch-dann
- Owner: wogong
- License: mit
- Created: 2018-05-09T15:24:51.000Z (over 6 years ago)
- Default Branch: master
- Last Pushed: 2020-09-30T19:21:38.000Z (over 4 years ago)
- Last Synced: 2024-10-12T21:08:32.602Z (4 months ago)
- Topics: deep-learning, domain-adaptation, generative-adversarial-network, pytorch
- Language: Jupyter Notebook
- Homepage:
- Size: 97.7 KB
- Stars: 145
- Watchers: 4
- Forks: 19
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# PyTorch-DANN
A PyTorch implementation for paper *[Unsupervised Domain Adaptation by Backpropagation](http://sites.skoltech.ru/compvision/projects/grl/)*
InProceedings (icml2015-ganin15)
Ganin, Y. & Lempitsky, V.
Unsupervised Domain Adaptation by Backpropagation
Proceedings of the 32nd International Conference on Machine Learning, 2015## Environment
- Python 3.6
- PyTorch 1.0## Note
- `MNISTmodel()`
- basically the same network structure as proposed in the paper, expect for adding dropout layer in feature extractor
- large gap exsits between with and w/o dropout layer
- better result than paper
- `SVHNmodel()`
- network structure proposed in the paper may be wrong for both 32x32 and 28x28 inputs
- change last conv layer's filter to 4x4, get similar(actually higher) result
- `GTSRBmodel()`
- `AlexModel`
- not successful, mainly due to the pretrained model difference## Result
| | MNIST-MNISTM | SVHN-MNIST | SYNDIGITS-SVHN | SYNSIGNS-GTSRB |
| :------------------: | :------------: | :--------: |:-------------: |:-------------: |
| Source Only | 0.5225 | 0.5490 | 0.8674 | 0.7900 |
| DANN(paper) | 0.7666 | 0.7385 | 0.9109 | 0.8865 |
| This Repo Source Only| - | - | - | 0.9100 |
| This Repo | 0.8400 | 0.7339 | 0.8200 | - || | AMAZON-WEBVCAM | DSLR-WEBCAM | WEBCAM-DSLR |
| :------------------: | :------------: |:-----------: |:----------: |
| Source Only | 0.6420 | 0.9610 | 0.9780 |
| DANN(paper) | 0.7300 | 0.9640 | 0.9920 |
| This Repo Source Only| - | - | - |
| This Repo | 0.6528 | - | - |## Credit
-
-
-