Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/wtsxdev/machine-learning-for-cyber-security
Curated list of tools and resources related to the use of machine learning for cyber security
https://github.com/wtsxdev/machine-learning-for-cyber-security
Last synced: about 2 months ago
JSON representation
Curated list of tools and resources related to the use of machine learning for cyber security
- Host: GitHub
- URL: https://github.com/wtsxdev/machine-learning-for-cyber-security
- Owner: wtsxDev
- Created: 2017-01-15T19:02:59.000Z (about 8 years ago)
- Default Branch: master
- Last Pushed: 2020-10-01T04:05:19.000Z (over 4 years ago)
- Last Synced: 2024-11-11T21:37:26.834Z (3 months ago)
- Size: 9.77 KB
- Stars: 1,460
- Watchers: 139
- Forks: 440
- Open Issues: 6
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome-security-collection - **1065**星
README
# Machine Learning for Cyber Security [![Awesom](https://3.bp.blogspot.com/-ol6mgvgyN3A/WHvHkXyG6rI/AAAAAAAAB1s/OzsvrKL7glc5I7tR4GluinTXvkM2IUgSgCLcB/s1600/machine%2Blearning%2Bfor%2Bcyber%2Bsecurity.png)](http://kalitut.com)
A curated list of amazingly awesome tools and resources related to the use of machine learning for cyber security.
## Table of Contents
- [Datasets](#-datasets)
- [Papers](#-papers)
- [Books](#-books)
- [Talks](#-talks)
- [Tutorials](#-tutorials)
- [Courses](#-courses)
- [Miscellaneous](#-miscellaneous)## [↑](#table-of-contents) Datasets
* [Samples of Security Related Dats](http://www.secrepo.com/)
* [DARPA Intrusion Detection Data Sets](https://www.ll.mit.edu/ideval/data/)
* [Stratosphere IPS Data Sets](https://stratosphereips.org/category/dataset.html)
* [Open Data Sets](http://csr.lanl.gov/data/)
* [Data Capture from National Security Agency](http://www.westpoint.edu/crc/SitePages/DataSets.aspx)
* [The ADFA Intrusion Detection Data Sets](https://www.unsw.adfa.edu.au/australian-centre-for-cyber-security/cybersecurity/ADFA-IDS-Datasets)
* [NSL-KDD Data Sets](https://github.com/defcom17/NSL_KDD)
* [Malicious URLs Data Sets](https://sysnet.ucsd.edu/projects/url)
* [Multi-Source Cyber-Security Events](http://csr.lanl.gov/data/cyber1/)
* [Malware Training Sets: A machine learning dataset for everyone](http://marcoramilli.blogspot.cz/2016/12/malware-training-sets-machine-learning.html)## [↑](#table-of-contents) Papers
* [Fast, Lean, and Accurate: Modeling Password Guessability Using Neural Networks](https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/melicher)
* [Outside the Closed World: On Using Machine Learning for Network Intrusion Detection](http://ieeexplore.ieee.org/document/5504793/?reload=true)
* [Anomalous Payload-Based Network Intrusion Detection](https://link.springer.com/chapter/10.1007/978-3-540-30143-1_11)
* [Malicious PDF detection using metadata and structural features](http://dl.acm.org/citation.cfm?id=2420987)
* [Adversarial support vector machine learning](https://dl.acm.org/citation.cfm?id=2339697)
* [Exploiting machine learning to subvert your spam filter](https://dl.acm.org/citation.cfm?id=1387709.1387716)
* [CAMP – Content Agnostic Malware Protection](http://www.covert.io/research-papers/security/CAMP%20-%20Content%20Agnostic%20Malware%20Protection.pdf)
* [Notos – Building a Dynamic Reputation System for DNS](http://www.covert.io/research-papers/security/Notos%20-%20Building%20a%20dynamic%20reputation%20system%20for%20dns.pdf)
* [Kopis – Detecting malware domains at the upper dns hierarchy](http://www.covert.io/research-papers/security/Kopis%20-%20Detecting%20malware%20domains%20at%20the%20upper%20dns%20hierarchy.pdf)
* [Pleiades – From Throw-away Traffic To Bots – Detecting The Rise Of DGA-based Malware](http://www.covert.io/research-papers/security/From%20throw-away%20traffic%20to%20bots%20-%20detecting%20the%20rise%20of%20dga-based%20malware.pdf)
* [EXPOSURE – Finding Malicious Domains Using Passive DNS Analysis](http://www.covert.io/research-papers/security/Exposure%20-%20Finding%20malicious%20domains%20using%20passive%20dns%20analysis.pdf)
* [Polonium – Tera-Scale Graph Mining for Malware Detection](http://www.covert.io/research-papers/security/Polonium%20-%20Tera-Scale%20Graph%20Mining%20for%20Malware%20Detection.pdf)
* [Nazca – Detecting Malware Distribution in Large-Scale Networks](http://www.covert.io/research-papers/security/Nazca%20-%20%20Detecting%20Malware%20Distribution%20in%20Large-Scale%20Networks.pdf)
* [PAYL – Anomalous Payload-based Network Intrusion Detection](http://www.covert.io/research-papers/security/PAYL%20-%20Anomalous%20Payload-based%20Network%20Intrusion%20Detection.pdf)
* [Anagram – A Content Anomaly Detector Resistant to Mimicry Attacks](http://www.covert.io/research-papers/security/Anagram%20-%20A%20Content%20Anomaly%20Detector%20Resistant%20to%20Mimicry%20Attack.pdf)
* [Applications of Machine Learning in Cyber Security](https://www.researchgate.net/publication/283083699_Applications_of_Machine_Learning_in_Cyber_Security)
* [An Investigation of Byte N-Gram Features for Malware Classification](http://www.readcube.com/articles/10.1007/s11416-016-0283-1?author_access_token=Y2ftVow3BBIXRTHYIxoCG_e4RwlQNchNByi7wbcMAY4NW74db1mhZZQDQYJ1tM7Y-KZqnwIXRhZC64F6SuX0bowkkoy4Ro-NFZSGOs2sw2kG7I6cMZb9G3I0tfGpLO_rZlh-MF7KZ2i-qxjmAi-Shw%3D%3D)## [↑](#table-of-contents) Books
* [Data Mining and Machine Learning in Cybersecurity](http://amzn.to/2iuWdYX)
* [Machine Learning and Data Mining for Computer Security](http://amzn.to/2jnCHBs)
* [Network Anomaly Detection: A Machine Learning Perspective](http://amzn.to/2jlPsgm)
* [Machine Learning for Hackers: Case Studies and Algorithms to Get You Started](http://amzn.to/2jyBZPo)## [↑](#table-of-contents) Talks
* [Using Machine Learning to Support Information Security](https://www.youtube.com/watch?v=tukidI5vuBs)
* [Defending Networks with Incomplete Information](https://www.youtube.com/watch?v=36IT9VgGr0g)
* [Applying Machine Learning to Network Security Monitoring](https://www.youtube.com/watch?v=vy-jpFpm1AU)
* [Measuring the IQ of your Threat Intelligence Feeds](https://www.youtube.com/watch?v=yG6QlHOAWiE)
* [Data-Driven Threat Intelligence: Metrics On Indicator Dissemination And Sharing](https://www.youtube.com/watch?v=6JMEKnes-w0)
* [Applied Machine Learning for Data Exfil and Other Fun Topics](https://www.youtube.com/watch?v=dGwH7m4N8DE)
* [Secure Because Math: A Deep-Dive on ML-Based Monitoring](https://www.youtube.com/watch?v=TYVCVzEJhhQ)
* [Machine Duping 101: Pwning Deep Learning Systems](https://www.youtube.com/watch?v=JAGDpJFFM2A)
* [Delta Zero, KingPhish3r – Weaponizing Data Science for Social Engineering](https://www.youtube.com/watch?v=l7U0pDcsKLg)
* [Defeating Machine Learning What Your Security Vendor Is Not Telling You](https://www.youtube.com/watch?v=oiuS1DyFNd8)
* [CrowdSource: Crowd Trained Machine Learning Model for Malware Capability Det](https://www.youtube.com/watch?v=u6a7afsD39A)
* [Defeating Machine Learning: Systemic Deficiencies for Detecting Malware](https://www.youtube.com/watch?v=sPtbDUJjhbk)
* [Packet Capture Village – Theodora Titonis – How Machine Learning Finds Malware](https://www.youtube.com/watch?v=2cQRSPFSY-s)
* [Build an Antivirus in 5 Min – Fresh Machine Learning #7. A fun video to watch](https://www.youtube.com/watch?v=iLNHVwSu9EA&t=245s)
* [Hunting for Malware with Machine Learning](https://www.youtube.com/watch?v=zT-4zdtvR30)
* [Machine Learning for Threat Detection](https://www.youtube.com/watch?v=qVwktOa-F34)
* [Machine Learning and the Cloud: Disrupting Threat Detection and Prevention](https://www.youtube.com/watch?v=fRklX97iGIw)
* [Fraud detection using machine learning & deep learning](https://www.youtube.com/watch?v=gHtN4jU69W0)
* [The Applications Of Deep Learning On Traffic Identification](https://www.youtube.com/watch?v=B7OKgC3AJVM)
* [Defending Networks With Incomplete Information: A Machine Learning Approach](https://www.youtube.com/watch?v=_0CRSF6yPB4)
* [Machine Learning & Data Science](https://vimeo.com/112702666)## [↑](#table-of-contents) Tutorials
* [Click Security Data Hacking Project](http://clicksecurity.github.io/data_hacking/)
* [Using Neural Networks to generate human readable passwords](http://fsecurify.com/using-neural-networks-to-generate-human-readable-passwords/)
* [Machine Learning based Password Strength Classification](http://fsecurify.com/machine-learning-based-password-strength-checking/)
* [Using Machine Learning to Detect Malicious URLs](http://fsecurify.com/using-machine-learning-detect-malicious-urls/)
* [Big Data and Data Science for Security and Fraud Detection](http://www.kdnuggets.com/2015/12/big-data-science-security-fraud-detection.html)
* [Using deep learning to break a Captcha system](https://deepmlblog.wordpress.com/2016/01/03/how-to-break-a-captcha-system/)
* [Data mining for network security and intrusion detection](https://www.r-bloggers.com/data-mining-for-network-security-and-intrusion-detection/)
* [An Introduction to Machine Learning for Cybersecurity and Threat Hunting](http://blog.sqrrl.com/an-introduction-to-machine-learning-for-cybersecurity-and-threat-hunting)## [↑](#table-of-contents) Courses
* [Data Mining for Cyber Security by Stanford](https://web.stanford.edu/class/cs259d)
## [↑](#table-of-contents) Miscellaneous
* [System predicts 85 percent of cyber-attacks using input from human experts](https://news.mit.edu/2016/ai-system-predicts-85-percent-cyber-attacks-using-input-human-experts-0418)
* [A list of open source projects in cyber security using machine learning](http://www.mlsecproject.org/#open-source-projects)Please have a look at
* [Best Hacking Books](http://www.kalitut.com/2016/12/best-ethical-hacking-books.html)
* [Best Reverse Engineering Books](http://www.kalitut.com/2017/01/Best-reverse-engineering-books.html)
* [Best Machine learning Books](http://www.kalitut.com/2017/01/machine-learning-book.html)
* [Best 5 books Programming Books](http://www.kalitut.com/2017/01/Top-Programming-Books.html)
* [Best Java Books](http://www.kalitut.com/2017/01/Best-Java-Programming-Books.html)