https://github.com/wtupc96/channel-fusion
The author's officially PyTorch Channel-Fusion implementation.
https://github.com/wtupc96/channel-fusion
cifar10 cifar100 classification color-space computer-vision data-augmentation deep-learning image-processing svhn transformation
Last synced: 4 months ago
JSON representation
The author's officially PyTorch Channel-Fusion implementation.
- Host: GitHub
- URL: https://github.com/wtupc96/channel-fusion
- Owner: wtupc96
- License: cc0-1.0
- Created: 2019-12-25T09:20:56.000Z (almost 6 years ago)
- Default Branch: master
- Last Pushed: 2019-12-27T06:34:53.000Z (almost 6 years ago)
- Last Synced: 2025-02-25T09:24:00.686Z (7 months ago)
- Topics: cifar10, cifar100, classification, color-space, computer-vision, data-augmentation, deep-learning, image-processing, svhn, transformation
- Language: Python
- Size: 313 KB
- Stars: 3
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Channel Fusion: An Effective Data Augmentation to Boost Image Classification
The author's officially PyTorch Channel-Fusion implementation.The code of models is modified from [`kuangliu/pytorch-cifar`](https://github.com/kuangliu/pytorch-cifar), have the following modifications:
1. Support `svhn` dataset;
2. `num_classes` can be passed as a parameter;- *Thanks for the brilliant code of various models!* :smile:
## Channel Fusion
Channel fusion is a surprisingly easy but effective data augmentation approach for models that only needs regrouping different image channels of the same class.

## Requirements
- Python 3.6
- PyTorch 1.0## Run
1. Dataset preparation, to see [`data/README.md`](https://github.com/wtupc96/channel-fusion/tree/master/data);
2. Train with `python main.py --model [MODEL] --dataset [DATASET] (--channel_fusion) --lr [INIT_LR]`
- Available models:
- **VGG**: VGG-11, VGG-13, VGG-16, VGG-19;
- **ResNet**: ResNet-18, ResNet-34, ResNet-50, ResNet-101, ResNet-152;
- **ResNet-PreAct**: ResNet-18-PreAct, ResNet-34-PreAct, ResNet-50-PreAct, ResNet-101-PreAct, ResNet-152-PreAct;
- **LeNet**, **GoogLeNet**;
- **DenseNet**: DenseNet-121, DenseNet-161, DenseNet-169, DenseNet-201;
- **ResNeXt**: ResNeXt29_2x64d, ResNeXt29_4x64d, ResNeXt29_8x64d, ResNeXt29_32x4d;
- **MobileNet**, **MobileNet-V2**;
- **DPN**: DPN-26, DPN-92;
- **ShuffleNet**: ShuffleNetG2, ShuffleNetG3, ShuffleNetV2;
- **SE-ResNet-18**;
- **EfficientNet-B0**.
- Available datasets:
- CIFAR-10;
- CIFAR-100;
- SVHN.
3. You will see results on the console and get checkpoints as well as losses and accuracies in `checkpoint` folder. :)## Results
ResNet-18-PreAct:
|  |  |
| :-------------------------: | :--------------------------: |
| Training Loss | Training Error |
|  |  |
| Testing Loss | Testing Error |