Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/wubinzzu/multi-behavior-recommendation-papers
Multi-Behavior Recommendation-Papers
https://github.com/wubinzzu/multi-behavior-recommendation-papers
Last synced: about 2 months ago
JSON representation
Multi-Behavior Recommendation-Papers
- Host: GitHub
- URL: https://github.com/wubinzzu/multi-behavior-recommendation-papers
- Owner: wubinzzu
- Created: 2024-03-19T13:05:12.000Z (10 months ago)
- Default Branch: main
- Last Pushed: 2024-05-22T03:32:53.000Z (8 months ago)
- Last Synced: 2024-05-22T04:32:16.015Z (8 months ago)
- Size: 6.84 KB
- Stars: 5
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
### A Paper List for Multi-Behavior Recommendation
This is a paper list for Multi-Behavior Recommendation,which also contains some related research areas.
**Keywords:** *Recommend System, Multi-Behavior Recommendation, Multi-task Learning*
#### Paper List
- `FCS(2023)` BGNN_ Behavior-aware graph neural network for heterogeneous session-based recommendation. **[GNN]** **[[PDF](https://journal.hep.com.cn/fcs/EN/article/downloadArticleFile.do?attachType=PDF&id=33255)]**
- `WSDM(2023)` Knowledge Enhancement for Contrastive Multi-Behavior Recommendation. **[Contrastive Learning]** **[[PDF](https://arxiv.org/pdf/2301.05403.pdf)]**
- `WWW(2023)` Compressed Interaction Graph based Framework for Multi-behavior Recommendation. **[GCN]** **[[PDF](https://dl.acm.org/doi/pdf/10.1145/3543507.3583312)]** **[[code](https://github.com/MC-CV/CIGF)]**
- `WWW(2023)` Denoising and Prompt-Tuning for Multi-Behavior Recommendation. **[GNN]** **[[PDF](https://arxiv.org/pdf/2302.05862.pdf)]** **[[code](https://github.com/zc-97/DPT)]**
- `WWW(2023)` Multi-Behavior Recommendation with Cascading Graph Convolution Networks. **[GCN]** **[[PDF](http://export.arxiv.org/pdf/2303.15720)]** **[[code](https://github.com/SS-00-SS/MBCGCN)]**
- `TKDE(2023)` Multi-Behavior Sequential Recommendation with Temporal Graph Transformer. **[GNN+Transformer]** **[[PDF](https://arxiv.org/pdf/2206.02687.pdf)]** **[[code](https://github.com/akaxlh/TGT)]**
- `ArXiv(2023)` MB-HGCN A Hierarchical Graph Convolutional Network for Multi-behavior Recommendation. **[GCN]** **[[PDF](https://arxiv.org/pdf/2306.10679.pdf)]** **[[code](https://github.com/MingshiYan/MB-HGCN)]**
- `ICDM(2023)` Contrastive Learning-based Multi-behavior Recommendation with Semantic Knowledge Enhancement. **[Contrastive Learning]**
- `ICDM(2023)` Variational Collective Graph AutoEncoder for Multi-behavior Recommendation. **[GNN]**
- `SIGKDD(2023)` Hierarchical Projection Enhanced Multi-behavior Recommendation. **[[PDF](https://dl.acm.org/doi/pdf/10.1145/3580305.3599838)] [[code]( https://github.com/MC-CV/HPMR)]**
- `SIGIR(2023)` Improving Implicit Feedback-Based Recommendation through Multi-Behavior Alignment. **[[PDF](https://arxiv.org/pdf/2305.05585.pdf)]** **[[code](https://github.com/LiuXiangYuan/MBA)]**
- `SIGIR(2023)` Multi-behavior Self-supervised Learning for Recommendation. **[GNN]** **[[PDF](https://dl.acm.org/doi/pdf/10.1145/3539618.3591734)]** **[[code](https://github.com/Scofield666/MBSSL.git)]**
- `CIKM(2023)` Parallel Knowledge Enhancement based Framework for Multi-behavior Recommendation. **[GCN]** **[[PDF](https://arxiv.org/pdf/2308.04807.pdf)]** **[[code](https://github.com/MC-CV/PKEF)]**
- `TOIS(2023)` Cascading Residual Graph Convolutional Network for Multi-Behavior Recommendation. **[CF+GCN]** **[[PDF](https://arxiv.org/pdf/2205.13128.pdf)]** **[[code](https://github.com/MingshiYan/CRGCN)]**
- `ArXiv(2023)` A Survey on Multi-Behavior Sequential Recommendation. **[[PDF](https://arxiv.org/pdf/2308.15701.pdf)]**
- `AAAI(2023)` Dynamic Multi-Behavior Sequence Modeling for Next Item Recommendation. **[RNN]** **[[PDF](https://arxiv.org/pdf/2301.12105.pdf)]**
- `RecSys(2023)` Multi-Relational Contrastive Learning for Recommendation. **[CL]** **[[PDF](https://dl.acm.org/doi/pdf/10.1145/3604915.3608807)]** **[[code](https://github.com/HKUDS/RCL)]**
- `DASFAA(2022)` Multi-view Multi-behavior Contrastive Learning in Recommendation. **[CL]** **[[PDF](https://browse.arxiv.org/pdf/2203.10576)]** **[[code](https://github.com/wyqing20/MMCLR)]**
- `WSDM(2022)` Contrastive Meta Learning with Behavior Multiplicity for Recommendation. **[CF+GNN]** **[[PDF](https://arxiv.org/pdf/2202.08523.pdf)]** **[[code](https://github.com/weiwei1206/CML.git)]**
- `DASFAA(2022)` Neural Multi-Task Recommendation from Multi-Behavior Data. **[Multi-Task]** **[[PDF](https://arxiv.org/pdf/2203.10576.pdf)]** **[[code](https://github.com/wyqing20/MMCLR)]**
- `DASFAA(2022)` Multi-behavior Recommendation with Two-Level Graph Attentional Networks. **[Transformer]**
- `SIGIR(2022)` Multi-Behavior Sequential Transformer Recommender. **[Transformer]** **[[PDF](https://dl.acm.org/doi/pdf/10.1145/3477495.3532023)]** **[code]**
- `KDD(2022)` Multi-Behavior Hypergraph-Enhanced Transformer for Sequential Recommendation. **[Transformer]** **[[PDF](https://arxiv.org/pdf/2207.05584.pdf)]** **[[code](https://github.com/yuh-yang/MBHT-KDD22)]**
- `ArXiv(2022)` Causal Intervention for Fairness in Multi-behavior Recommendation. **[[PDF](https://arxiv.org/pdf/2209.04589.pdf)]**
- `TNNLS(2022)` Multi-Behavior Graph Neural Networks for Recommender System. **[GNN]** **[[PDF](https://arxiv.org/pdf/2302.08678.pdf)]** **[[code](https://github.com/akaxlh/MBRec)]**
- `TKDD(2022)` MBN: Towards Multi-Behavior Sequence Modeling for Next Basket Recommendation. **[[code](https://github.com/gybuay/MBN)]**
- `ICDE(2021)` Multi-Behavior Enhanced Recommendation with Cross-Interaction Collaborative Relation Modeling. **[GNN]** **[[PDF](https://arxiv.org/pdf/2201.02307v1.pdf)]** **[[code](https://github.com/akaxlh/GNMR)]**
- `GeoInformatica(2021)` Graph neural network based model for multi-behavior session-based recommendation. **[GNN]** **[[PDF](https://link.springer.com/content/pdf/10.1007/s10707-021-00439-w.pdf?pdf=button)]** **[code]**
- `SIGIR(2021)` Graph Meta Network for Multi-Behavior Recommendation. **[GNN]** **[PDF]** **[[code](https://github.com/akaxlh/MB-GMN)]**
- `ArXiv(2021)` Knowledge-Enhanced Hierarchical Graph Transformer Network for Multi-Behavior Recommendation. **[Transformer]** **[[PDF](https://arxiv.org/pdf/2110.04000v1.pdf)]** **[[code](https://github.com/akaxlh/KHGT)]**
- `ICDM(2021)` Hyper Meta-Path Contrastive Learning for Multi-Behavior Recommendation. **[GCL]** **[[PDF](https://arxiv.org/pdf/2109.02859v1.pdf)]** **[[code](https://github.com/Haoran-Young/HMG-CR)]**
- `ICDM(2021)` Composition-Enhanced Graph Collaborative Filtering for Multi-behavior Recommendation. **[GCF]** **[PDF]** **[code]**
- `TKDE(2021)` Learning to Recommend With Multiple Cascading Behaviors. **[CF]** **[[PDF](https://fi.ee.tsinghua.edu.cn/~gaochen/papers/TKDE2019-NMTR.pdf)]** **[[code](https://github.com/fiblab)]**
- `ICDE(2021)` Sequential Recommendation on Dynamic Heterogeneous Information Network. **[GNN]**
- `AAAI(2021)` Graph Heterogeneous Multi-Relational Recommendation. **[GNN]** **[[code](https://github.com/chenchongthu/GHCF)]**
- `SIGIR(2020)` Incorporating User Micro-behaviors and Item Knowledge into Multi-task Learning for Session-based Recommendation. **[RNN+GNN+MLP]** **[[PDF](https://arxiv.org/pdf/2006.06922.pdf)]** **[[code](https://github.com/ciecus/MKM-SR)]**
- `SIGIR(2020)` Multi-behavior Recommendation with Graph Convolutional Networks. **[GCN]** **[[PDF](http://staff.ustc.edu.cn/~hexn/papers/sigir20-MBGCN.pdf)]**
- `SIGIR(2020)` Multiplex Behavioral Relation Learning for Recommendation via Memory Augmented Transformer Network. **[Transformer]** **[[PDF](https://arxiv.org/pdf/2110.04002.pdf)]** **[[code](https://github.com/akaxlh/MATN)]**
- `CIKM(2020)` Multiplex Graph Neural Networks for Multi-behavior Recommendation. **[GNN]** **[[PDF](https://arxiv.org/pdf/2302.08678.pdf)]** **[[code](https://github.com/akaxlh/MBRec)]**
- `ICDE(2019)` Neural Multi-Task Recommendation from Multi-Behavior Data. **[NCF]** **[[PDF](https://arxiv.org/pdf/1809.08161v2.pdf)]** **[code]**
- `TKDE(2016)` A General Recommendation Model for Heterogeneous Networks. **[GNN]**