Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/wufan-tb/AutoLabelImg
auto-labelimg based on yolov5, with many other useful tools
https://github.com/wufan-tb/AutoLabelImg
labelimg yolov5
Last synced: about 1 month ago
JSON representation
auto-labelimg based on yolov5, with many other useful tools
- Host: GitHub
- URL: https://github.com/wufan-tb/AutoLabelImg
- Owner: wufan-tb
- License: mit
- Created: 2020-12-10T05:24:59.000Z (about 4 years ago)
- Default Branch: master
- Last Pushed: 2023-02-26T06:45:37.000Z (almost 2 years ago)
- Last Synced: 2024-08-02T01:25:11.375Z (4 months ago)
- Topics: labelimg, yolov5
- Language: Python
- Homepage:
- Size: 13.1 MB
- Stars: 240
- Watchers: 2
- Forks: 54
- Open Issues: 18
-
Metadata Files:
- Readme: readme.md
- License: LICENSE
Awesome Lists containing this project
- awesome-object-detection-datasets - wufan-tb/AutoLabelImg - tb/AutoLabelImg?style=social"/> : auto-labelimg based on yolov5, with many other useful tools. AutoLabelImg 多功能自动标注工具。 (Summary)
- awesome-yolo-object-detection - wufan-tb/AutoLabelImg - tb/AutoLabelImg?style=social"/> : auto-labelimg based on yolov5, with many other useful tools. AutoLabelImg 多功能自动标注工具。 (Applications)
- awesome-yolo-object-detection - wufan-tb/AutoLabelImg - tb/AutoLabelImg?style=social"/> : auto-labelimg based on yolov5, with many other useful tools. AutoLabelImg 多功能自动标注工具。 (Applications)
README
# AutoLabelImg:MultiFunction AutoAnnotate Tools
![AutoLabelImg](./demo/demo.png)
### [English](./readme.md) | [中文](./readme_CN.md)
### Introduction:
Based on [labelImg](https://github.com/tzutalin/labelImg), we add many useful annotate tools, in **Annoatate-tools** and **Video-tools** menu, including:
- **`TOOL LIST`**:
- [x] **Auto Annotate**:anto annotate images using yolov5 detector
- [x] **Tracking Annotate**:using tracking method in opencv, annotate video data
- [x] **Magnifing Lens**:helpful when annotating small objects, optional function
- [x] **Data Agument**:data agument
- [x] **Search System**:search details info based on your input
- [x] other tools:label selecting/rename/counting, fix annotation, video merge/extract, welcome to try### Demo:
seen in Vtuber:
[Auto Annotate](https://www.bilibili.com/video/BV1Uu411Q7WW/)
[Tracking Annotate](https://www.bilibili.com/video/BV1XT4y1X7At/)
[Magnifing Lens](https://www.bilibili.com/video/BV1nL4y1G7qm/)
[Data Augment](https://www.bilibili.com/video/BV1Vu411R7Km/)
[Search System](https://www.bilibili.com/video/BV1ZL4y137ar/)
### Update log:
2022.01.14:remove Retinanet( matain yolov5 only), and add label selecting when autolabeling
2022.01.11:imporve magnifing lens, more fluent and can be shut
2020.12.28:add video tracking annotate
2020.12.10:autolabelimg,version 1.0
## Installation:
1. clone this repo:
```bash
git clone https://github.com/wufan-tb/AutoLabelImg
cd AutoLabelImg
```2. install requirments:
```bash
conda create -n {your_env_name} python=3.7.6
conda activate {your_env_name}
pip install -r requirements.txt
```3. compile source code:
**Ubuntu User:**
```
sudo apt-get install pyqt5-dev-tools
make qt5py3
```
**Windows User:**
```
pyrcc5 -o libs/resources.py resources.qrc
```
4. prepare yolov5 weights file and move them to here: [official model zoo:[Yolov5](https://github.com/ultralytics/yolov5)]```bash
mv {your_model_weight.pt} pytorch_yolov5/weights/
```5. open labelimg software
```
python labelImg.py
```## Set shortcut to open software[optional]
**Windows User:**
create a file:labelImg.bat, open it and type these text(D disk as an example):
```bash
D:
cd D:{path to your labelImg folder}
start python labelImg.py
exit
```double click labelImg.bat to open the software.
**Ubuntu User:**
open environment setting file:
```bash
vim ~/.bashrc
```add this command:
```bash
alias labelimg='cd {path to your labelImg folder} && python labelImg.py
```source it:
```bash
source ~/.bashrc
```typing 'labeling' in terminal to open the software.
## Citation
```
{ AutoLabelImg,
author = {Wu Fan},
year = {2020},
url = {\url{https://https://github.com/wufan-tb/AutoLabelImg}}
}
```