Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/wxinlong/asis
Associatively Segmenting Instances and Semantics in Point Clouds, CVPR 2019
https://github.com/wxinlong/asis
deep-learning instance-segmentation point-cloud semantic-segmentation
Last synced: 3 days ago
JSON representation
Associatively Segmenting Instances and Semantics in Point Clouds, CVPR 2019
- Host: GitHub
- URL: https://github.com/wxinlong/asis
- Owner: WXinlong
- License: mit
- Created: 2019-02-26T02:46:20.000Z (almost 6 years ago)
- Default Branch: master
- Last Pushed: 2019-04-27T12:22:24.000Z (almost 6 years ago)
- Last Synced: 2025-01-16T18:21:02.223Z (10 days ago)
- Topics: deep-learning, instance-segmentation, point-cloud, semantic-segmentation
- Language: Python
- Homepage:
- Size: 1.64 MB
- Stars: 256
- Watchers: 3
- Forks: 65
- Open Issues: 17
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Associatively Segmenting Instances and Semantics in Point Clouds
The full paper is available at: https://arxiv.org/abs/1902.09852.
Qualitative results of ASIS on the S3DIS and vKITTI test fold:![](misc/s3dis_asis.png)
![](misc/vkitti_asis.png)## Overview
![](misc/fig.png)## Dependencies
The code has been tested with Python 2.7 on Ubuntu 14.04.
* [TensorFlow](https://www.tensorflow.org/)
* h5py## Data and Model
* Download 3D indoor parsing dataset ([S3DIS Dataset](https://docs.google.com/forms/d/e/1FAIpQLScDimvNMCGhy_rmBA2gHfDu3naktRm6A8BPwAWWDv-Uhm6Shw/viewform?c=0&w=1)). Version 1.2 of the dataset is used in this work.
``` bash
python collect_indoor3d_data.py
python gen_h5.py
cd data && python generate_input_list.py
cd ..
```* (optional) Trained model can be downloaded from [here](https://drive.google.com/open?id=1UF2nfXdWTOa1iXXmD54_c09rM7pr-kMK).
## Usage
* Compile TF Operators
Refer to [PointNet++](https://github.com/charlesq34/pointnet2)
* Training
``` bash
cd models/ASIS/
ln -s ../../data .
sh +x train.sh 5
```* Evaluation
``` bash
python eval_iou_accuracy.py
```Note: We test on Area5 and train on the rest folds in default. 6 fold CV can be conducted in a similar way.
## Citation
If our work is useful for your research, please consider citing:@inproceedings{wang2019asis,
title={Associatively Segmenting Instances and Semantics in Point Clouds},
author={Wang, Xinlong and Liu, Shu and Shen, Xiaoyong and Shen, Chunhua, and Jia, Jiaya},
booktitle={CVPR},
year={2019}
}## Acknowledgemets
This code largely benefits from following repositories:
[PointNet++](https://github.com/charlesq34/pointnet2),
[SGPN](https://github.com/laughtervv/SGPN),
[DGCNN](https://github.com/WangYueFt/dgcnn) and
[DiscLoss-tf](https://github.com/hq-jiang/instance-segmentation-with-discriminative-loss-tensorflow)