https://github.com/x-tabdeveloping/rvfln
A Python implementation of random vector functional networks and broad learning systems using Sklearn's Regressor and classifier APIs
https://github.com/x-tabdeveloping/rvfln
broad-learning data-science deep-learning machine-learning scikit-learn sklearn sklearn-compatible
Last synced: 11 months ago
JSON representation
A Python implementation of random vector functional networks and broad learning systems using Sklearn's Regressor and classifier APIs
- Host: GitHub
- URL: https://github.com/x-tabdeveloping/rvfln
- Owner: x-tabdeveloping
- License: mit
- Created: 2022-03-21T15:43:29.000Z (almost 4 years ago)
- Default Branch: master
- Last Pushed: 2022-03-25T12:49:28.000Z (almost 4 years ago)
- Last Synced: 2025-03-18T14:06:19.850Z (11 months ago)
- Topics: broad-learning, data-science, deep-learning, machine-learning, scikit-learn, sklearn, sklearn-compatible
- Language: Python
- Homepage:
- Size: 16.6 KB
- Stars: 7
- Watchers: 1
- Forks: 0
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
- License: License.txt
Awesome Lists containing this project
README
# RVFLN
A Python implementation of Random Vector Functional Link Networks and Broad Learning Systems using the Sklearn API
## Installation
pip install rvfln
## Usage
Since the API is based on that of sklearn the usage is very similar.
The package contains:
- An rvfln module containing a regressor and a classifier estimator
- A bls module containing a regressor and a classifier estimator
### Example:
from rvfln.bls import BLSClassifier
clf = BLSClassifier(
n_z = 10,
n_z_features = 400,
n_h = 2000,
alpha = 1
).fit(x_train, y_train)
print(clf.score(x_test, y_test))
YOH-HAN PAO, STEPHEN M. PHILLIPS & DEJAN J. SOBAJIC (1992) Neural-net computing and the intelligent control of systems, International Journal of Control, 56:2, 263-289, DOI: 10.1080/00207179208934315