Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/xai-org/grok-1
Grok open release
https://github.com/xai-org/grok-1
Last synced: 11 days ago
JSON representation
Grok open release
- Host: GitHub
- URL: https://github.com/xai-org/grok-1
- Owner: xai-org
- License: apache-2.0
- Created: 2024-03-17T08:53:38.000Z (8 months ago)
- Default Branch: main
- Last Pushed: 2024-08-30T04:17:25.000Z (2 months ago)
- Last Synced: 2024-10-14T16:24:17.015Z (25 days ago)
- Language: Python
- Size: 984 KB
- Stars: 49,482
- Watchers: 564
- Forks: 8,326
- Open Issues: 103
-
Metadata Files:
- Readme: README.md
- License: LICENSE.txt
- Code of conduct: CODE_OF_CONDUCT.md
Awesome Lists containing this project
- awesome-vision-language-pretraining - [github - os) [[twitter post]](https://twitter.com/danielhanchen/status/1769550950270910630) (Miscellaneous)
- awesome-latest-LLM - Grok-1
- Awesome-AITools - Github - org/grok-1?style=social)|免费| (精选文章 / 开源大语言模型)
- awesome-repositories - xai-org/grok-1 - Grok open release (Python)
- AiTreasureBox - xai-org/grok-1 - 11-02_49521_1](https://img.shields.io/github/stars/xai-org/grok-1.svg)|Grok open release| (Repos)
- my-awesome - xai-org/grok-1 - 08 star:49.5k fork:8.3k Grok open release (Python)
- awesome-llm-and-aigc - Grok-1 - org/grok-1?style=social"/> : This repository contains JAX example code for loading and running the Grok-1 open-weights model. (Summary)
- awesome-llm-and-aigc - Grok-1 - org/grok-1?style=social"/> : This repository contains JAX example code for loading and running the Grok-1 open-weights model. (Summary)
README
# Grok-1
This repository contains JAX example code for loading and running the Grok-1 open-weights model.
Make sure to download the checkpoint and place the `ckpt-0` directory in `checkpoints` - see [Downloading the weights](#downloading-the-weights)
Then, run
```shell
pip install -r requirements.txt
python run.py
```to test the code.
The script loads the checkpoint and samples from the model on a test input.
Due to the large size of the model (314B parameters), a machine with enough GPU memory is required to test the model with the example code.
The implementation of the MoE layer in this repository is not efficient. The implementation was chosen to avoid the need for custom kernels to validate the correctness of the model.# Model Specifications
Grok-1 is currently designed with the following specifications:
- **Parameters:** 314B
- **Architecture:** Mixture of 8 Experts (MoE)
- **Experts Utilization:** 2 experts used per token
- **Layers:** 64
- **Attention Heads:** 48 for queries, 8 for keys/values
- **Embedding Size:** 6,144
- **Tokenization:** SentencePiece tokenizer with 131,072 tokens
- **Additional Features:**
- Rotary embeddings (RoPE)
- Supports activation sharding and 8-bit quantization
- **Maximum Sequence Length (context):** 8,192 tokens# Downloading the weights
You can download the weights using a torrent client and this magnet link:
```
magnet:?xt=urn:btih:5f96d43576e3d386c9ba65b883210a393b68210e&tr=https%3A%2F%2Facademictorrents.com%2Fannounce.php&tr=udp%3A%2F%2Ftracker.coppersurfer.tk%3A6969&tr=udp%3A%2F%2Ftracker.opentrackr.org%3A1337%2Fannounce
```or directly using [HuggingFace 🤗 Hub](https://huggingface.co/xai-org/grok-1):
```
git clone https://github.com/xai-org/grok-1.git && cd grok-1
pip install huggingface_hub[hf_transfer]
huggingface-cli download xai-org/grok-1 --repo-type model --include ckpt-0/* --local-dir checkpoints --local-dir-use-symlinks False
```# License
The code and associated Grok-1 weights in this release are licensed under the
Apache 2.0 license. The license only applies to the source files in this
repository and the model weights of Grok-1.