Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/xavierjiezou/pmaa
Official PyTorch implementation of "PMAA: A Progressive Multi-scale Attention Autoencoder Model for High-Performance Cloud Removal from Multi-temporal Satellite Imagery" (ECAI 2023).
https://github.com/xavierjiezou/pmaa
attention autoencoder cloud-removal generative-model image-processing image-restoration lightweight low-level-vision remote-sensing
Last synced: about 2 months ago
JSON representation
Official PyTorch implementation of "PMAA: A Progressive Multi-scale Attention Autoencoder Model for High-Performance Cloud Removal from Multi-temporal Satellite Imagery" (ECAI 2023).
- Host: GitHub
- URL: https://github.com/xavierjiezou/pmaa
- Owner: XavierJiezou
- License: mit
- Created: 2023-07-30T04:17:29.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2023-08-23T01:56:19.000Z (over 1 year ago)
- Last Synced: 2024-01-29T20:33:49.196Z (12 months ago)
- Topics: attention, autoencoder, cloud-removal, generative-model, image-processing, image-restoration, lightweight, low-level-vision, remote-sensing
- Language: JavaScript
- Homepage: https://xavierjiezou.github.io/PMAA/
- Size: 32.5 MB
- Stars: 13
- Watchers: 3
- Forks: 2
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
PMAA: A Progressive Multi-scale Attention Autoencoder Model for High-Performance Cloud Removal from Multi-temporal Satellite Imagery
This repository is the official PyTorch implementation of the accepted paper PMAA of ECAI 2023.
Xuechao Zou1,*,
Kai Li2,*,
Junliang Xing2,
Pin Tao1,2,†,
Yachao Cui1
Qinghai University1
•
Tsinghua University2
![pmaa](image/README/pmaa.png)
## News
- [2023/07/30] Code release.
- [2023/07/16] PMAA got accepted by ECAI 2023.
- [2023/03/29] PMAA is on arXiv now.## Requirements
To install dependencies:
```setup
pip install -r requirements.txt
```To download datasets:
- _Sen2_MTC_Old_: [multipleImage.tar.gz](https://doi.org/10.7910/DVN/BSETKZ)
- _Sen2_MTC_New_: [CTGAN.zip](https://drive.google.com/file/d/1-hDX9ezWZI2OtiaGbE8RrKJkN1X-ZO1P/view?usp=share_link)
## Training
To train the models in the paper, run these commands:
```train
python train_old.py
python train_new.py
```## Evaluation
To evaluate my models on two datasets, run:
```eval
python test_old.py
python test_new.py
```## Pre-trained Models
You can download pretrained models here:
- Our awesome model trained on _Sen2_MTC_old_: [pmaa_old.pth](/pretrained/pmaa_old.pth)
- Our awesome model trained on _Sen2_MTC_new_: [pmaa_new.pth](/pretrained/pmaa_new.pth)## Results
![res](image/README/res.png)
### Quantitative Results
![exp](image/README/exp.png)
### Qualitative Results
![vis](image/README/vis.png)
## Citation
If you use our code or models in your research, please cite with:
```latex
@article{zou2023pmaa,
title={PMAA: A Progressive Multi-scale Attention Autoencoder Model for High-Performance Cloud Removal from Multi-temporal Satellite Imagery},
author={Zou, Xuechao and Li, Kai and Xing, Junliang and Tao, Pin and Cui, Yachao},
journal={European Conference on Artificial Intelligence (ECAI)},
year={2023}
}
```