Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/xavierjiezou/pmaa

Official PyTorch implementation of "PMAA: A Progressive Multi-scale Attention Autoencoder Model for High-Performance Cloud Removal from Multi-temporal Satellite Imagery" (ECAI 2023).
https://github.com/xavierjiezou/pmaa

attention autoencoder cloud-removal generative-model image-processing image-restoration lightweight low-level-vision remote-sensing

Last synced: about 2 months ago
JSON representation

Official PyTorch implementation of "PMAA: A Progressive Multi-scale Attention Autoencoder Model for High-Performance Cloud Removal from Multi-temporal Satellite Imagery" (ECAI 2023).

Awesome Lists containing this project

README

        


logo

PMAA: A Progressive Multi-scale Attention Autoencoder Model for High-Performance Cloud Removal from Multi-temporal Satellite Imagery


This repository is the official PyTorch implementation of the accepted paper PMAA of ECAI 2023.


Xuechao Zou1,*,
Kai Li2,*,
Junliang Xing2,
Pin Tao1,2,†,
Yachao Cui1


Qinghai University1

Tsinghua University2



Paper Preprint
|
Project Page

![pmaa](image/README/pmaa.png)

## News

- [2023/07/30] Code release.
- [2023/07/16] PMAA got accepted by ECAI 2023.
- [2023/03/29] PMAA is on arXiv now.

## Requirements

To install dependencies:

```setup
pip install -r requirements.txt
```

To download datasets:

- _Sen2_MTC_Old_: [multipleImage.tar.gz](https://doi.org/10.7910/DVN/BSETKZ)

- _Sen2_MTC_New_: [CTGAN.zip](https://drive.google.com/file/d/1-hDX9ezWZI2OtiaGbE8RrKJkN1X-ZO1P/view?usp=share_link)

## Training

To train the models in the paper, run these commands:

```train
python train_old.py
python train_new.py
```

## Evaluation

To evaluate my models on two datasets, run:

```eval
python test_old.py
python test_new.py
```

## Pre-trained Models

You can download pretrained models here:

- Our awesome model trained on _Sen2_MTC_old_: [pmaa_old.pth](/pretrained/pmaa_old.pth)
- Our awesome model trained on _Sen2_MTC_new_: [pmaa_new.pth](/pretrained/pmaa_new.pth)

## Results

![res](image/README/res.png)

### Quantitative Results

![exp](image/README/exp.png)

### Qualitative Results

![vis](image/README/vis.png)

## Citation

If you use our code or models in your research, please cite with:

```latex
@article{zou2023pmaa,
title={PMAA: A Progressive Multi-scale Attention Autoencoder Model for High-Performance Cloud Removal from Multi-temporal Satellite Imagery},
author={Zou, Xuechao and Li, Kai and Xing, Junliang and Tao, Pin and Cui, Yachao},
journal={European Conference on Artificial Intelligence (ECAI)},
year={2023}
}
```