Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/xaxm007/mlchemy

A workspace related to all my Machine Learning study.
https://github.com/xaxm007/mlchemy

association-rule-learning classification-model clustering deep-neural-networks dimentionality-reduction machine-learning nlp-machine-learning pca regression-models reinforcement-learning-algorithms

Last synced: 23 days ago
JSON representation

A workspace related to all my Machine Learning study.

Awesome Lists containing this project

README

        

# 💻 MLchemy

A repository showcasing all my Jupyter notebooks and datasets used to implement various machine learning models during my learning journey.

---

## 📋 Table of Contents

- [Folder Structure](#folder-structure)
- [Topics Covered](#topics-covered)
- [How to Use](#how-to-use)
- [Requirements](#requirements)

---

## 📂 Folder Structure

```
MLchemy/
│
├── Regression/
│ ├── data
│ │ └── dataset.csv
│ └── notebook
│ ├── simple_linear_regression.ipynb
│ ├── support_vector_regression.ipynb
│ └── decision_tree_regression.ipynb
│
├── Classification/
│ ├── data
│ │ └── dataset.csv
│ └── notebook
│ ├── k_nearest_neighbours.ipynb
│ ├── support_vector_machine.ipynb
│ └── naive_bayes.ipynb
│
└── Dimensionality Reduction (PCA)/
├── data
│ └── dataset.csv
└── notebook
├── principal_component_analysis.ipynb
└── kernel_pca.ipynb
```

---

## 📎 Topics Covered

Machine Learning Implementations covered in this repository:

- **[Regression](./Regression/)**:
- Simple Linear Regression
- Multiple Linear Regression
- Polynomial Regression
- Support Vector Regression
- Decision Tree Regression
- Random Forest Regression

- **[Classification](./Classification/)**:
- Logistic Regression
- K Nearest Neighbors
- Support Vector Machines
- Kernel SVM
- Naive Bayes
- Decision Tree Classification
- Random Forest Classification

- **[Clustering](./Clustering/)**:
- K-Means Clustering
- Hierarchical Clustering

- **[Association Rule Learning](./Association%20Rule%20Learning/)**:
- Apriori
- Eclat

- **[Reinforcement Learning](./Reinforcement%20Learning/)**
- Upper Confidence Bound
- Thompson Sampling

- **[Natural Language Processing](./Natural%20Language%20Processing/)**
- Bag of Words

- **[Deep Learning](./Deep%20Learning/)**
- Artificial Neural Networks
- Convolutional Neural Networks

- **[Dimensionality Reduction](./PCA/)**:
- Principal Component Analysis (PCA)
- Linear Discriminant Analysis (LDA)
- Kernel PCA

- **[Model Selection](./Model%20Selection/)**
- Grid Search
- k-Fold Cross Validation

---

## 👉 How to Use

To run the notebooks locally, follow these steps:

1. **Clone the repository**:

```bash
git clone https://github.com/yourusername/MLchemy.git
cd MLchemy
```

`Recommended`, Follow steps to use conda env:

1. **Create a conda env**:

```bash
conda create -n
```

2. **Install Ipykernel for using Jupyter Notebook**:

```bash
conda install ipykernel
```

3. **Connect new ipykernel to the conda env**:

```bash
python -m ipykernel install --user --name --display-name "