Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/xboot/libonnx
A lightweight, portable pure C99 onnx inference engine for embedded devices with hardware acceleration support.
https://github.com/xboot/libonnx
ai baremetal c dedeep-neural-networks deep-learning embedded embedded-systems hardware-acceleration inference library lightweight machine-learning neural-network onnx portable
Last synced: 4 days ago
JSON representation
A lightweight, portable pure C99 onnx inference engine for embedded devices with hardware acceleration support.
- Host: GitHub
- URL: https://github.com/xboot/libonnx
- Owner: xboot
- License: mit
- Created: 2020-10-14T01:20:39.000Z (over 4 years ago)
- Default Branch: master
- Last Pushed: 2024-11-20T02:31:56.000Z (about 2 months ago)
- Last Synced: 2025-01-03T22:09:06.215Z (11 days ago)
- Topics: ai, baremetal, c, dedeep-neural-networks, deep-learning, embedded, embedded-systems, hardware-acceleration, inference, library, lightweight, machine-learning, neural-network, onnx, portable
- Language: C
- Homepage:
- Size: 91.3 MB
- Stars: 592
- Watchers: 29
- Forks: 108
- Open Issues: 15
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-machine-learning - libonnx - A lightweight, portable pure C99 onnx inference engine for embedded devices with hardware acceleration support. (C / [Tools](#tools-1))
- awesome-machine-learning - libonnx - A lightweight, portable pure C99 onnx inference engine for embedded devices with hardware acceleration support. (C)
- awesome-zig - xboot/libonnx
- awesome-machine-learning - libonnx - A lightweight, portable pure C99 onnx inference engine for embedded devices with hardware acceleration support. (C / [Tools](#tools-1))
- awesome-embedded-software - libonnx - Lightweight, portable pure C99 onnx inference engine for embedded devices with hardware acceleration support. (Data processing / AI ML)
- awesome-yolo-object-detection - xboot/libonnx
- awesome-yolo-object-detection - xboot/libonnx
- awesome-machine-learning - libonnx - A lightweight, portable pure C99 onnx inference engine for embedded devices with hardware acceleration support. (C / [Tools](#tools-1))
- awesome-machine-learning - libonnx - A lightweight, portable pure C99 onnx inference engine for embedded devices with hardware acceleration support. (C / [Tools](#tools-1))
README
***
# Libonnx
A lightweight, portable pure `C99` `onnx` `inference engine` for embedded devices with hardware acceleration support.## Getting Started
The library's .c and .h files can be dropped into a project and compiled along with it. Before use, should be allocated `struct onnx_context_t *` and you can pass an array of `struct resolver_t *` for hardware acceleration.The filename is path to the format of `onnx` model.
```c
struct onnx_context_t * ctx = onnx_context_alloc_from_file(filename, NULL, 0);
```Then, you can get input and output tensor using `onnx_tensor_search` function.
```c
struct onnx_tensor_t * input = onnx_tensor_search(ctx, "input-tensor-name");
struct onnx_tensor_t * output = onnx_tensor_search(ctx, "output-tensor-name");
```When the input tensor has been setting, you can run inference engine using `onnx_run` function and the result will putting into the output tensor.
```c
onnx_run(ctx);
```Finally, you must free `struct onnx_context_t *` using `onnx_context_free` function.
```c
onnx_context_free(ctx);
```## Compilation Instructions
Just type `make` at the root directory, you will see a static library and some binary of [examples](examples) and [tests](tests) for usage.
```shell
cd libonnx
make
```To compile the `mnist` example, you will have to install SDL2 and SDL2 GFX. On systems like Ubuntu run
```shell
apt-get install libsdl2-dev libsdl2-gfx-dev
```
to install the required Simple DirectMedia Layer libraries to run the GUI.#### Cross compilation example (for `arm64`)
Run `make CROSS_COMPILE=path/to/toolchains/aarch64-linux-gnu-` at the root directory to compile all libraries, tests and examples for the platform.
Change `CROSS_COMPILE` to point the toolchains that you plan to use.
#### How to run examples
After compiling all the files, you can run an example by using:
```shell
cd libonnx/examples/hello/output
./hello
```## Screenshots
* [Mnist handwritten digit prediction](examples/mnist)
![Mnist handwritten digit prediction](documents/images/mnist.gif)## Running tests
To run tests, for example on those in the `tests/model` folder use:
```shell
cd libonnx/tests/output
./tests ../model
```Here is the output:
```shell
[mnist_8](test_data_set_0) [OKAY]
[mnist_8](test_data_set_1) [OKAY]
[mnist_8](test_data_set_2) [OKAY]
[mobilenet_v2_7](test_data_set_0) [OKAY]
[mobilenet_v2_7](test_data_set_1) [OKAY]
[mobilenet_v2_7](test_data_set_2) [OKAY]
[shufflenet_v1_9](test_data_set_0) [OKAY]
[shufflenet_v1_9](test_data_set_1) [OKAY]
[shufflenet_v1_9](test_data_set_2) [OKAY]
[squeezenet_v11_7](test_data_set_0) [OKAY]
[squeezenet_v11_7](test_data_set_1) [OKAY]
[squeezenet_v11_7](test_data_set_2) [OKAY]
[super_resolution_10](test_data_set_0) [OKAY]
[tinyyolo_v2_8](test_data_set_0) [OKAY]
[tinyyolo_v2_8](test_data_set_1) [OKAY]
[tinyyolo_v2_8](test_data_set_2) [OKAY]
```Note that running the test on the other folders may not succeed. Some operators have not been implemented, look bat the notes section for more info.
## Notes
- This library based on the onnx version [v1.17.0](https://github.com/onnx/onnx/tree/v1.17.0) with the newest `opset 23` support. [The supported operator table](documents/the-supported-operator-table.md) in the [documents](documents) directory.
- Checkout the `tools` folder for help with ONNX model files.
- You can use `xxd -i ` (on Linux) to convert your onnx model into a `unsigned char array` and then use the function `onnx_context_alloc` to use it. This is how the models are loaded in the examples - `hello` and `mnist`.## Links
* [The chinese discussion posts](https://whycan.com/t_5440.html)
* [The onnx operators documentation](https://github.com/onnx/onnx/blob/master/docs/Operators.md)
* [The tutorials for creating ONNX models](https://github.com/onnx/tutorials)
* [The pre-trained onnx models](https://github.com/onnx/models)## License
This library is free software; you can redistribute it and or modify it under the terms of the MIT license. See [MIT License](LICENSE) for details.