Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/xfactlab/orpo

Official repository for ORPO
https://github.com/xfactlab/orpo

Last synced: about 6 hours ago
JSON representation

Official repository for ORPO

Awesome Lists containing this project

README

        

# **ORPO**

### **`Updates (24.03.25)`**
- [X] Sample script for ORPOTrainer in 🤗TRL is added to `trl/test_orpo_trainer_demo.py`
- [X] New model, 🤗kaist-ai/mistral-orpo-capybara-7k, is added to 🤗ORPO Collection
- [X] Now you can try ORPO in 🤗TRL, Axolotl and LLaMA-Factory🔥
- [X] We are making general guideline for training LLMs with ORPO, stay tuned🔥
- [X] **Mistral-ORPO-β** achieved a 14.7% in the length-controlled (LC) win rate on official AlpacaEval Leaderboard🔥

 

This is the official repository for **ORPO: Monolithic Preference Optimization without Reference Model**. The detailed results in the paper can be found in:
- [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kaist-ai%2Fmistral-orpo-beta)
- [AlpacaEval](#alpacaeval)
- [MT-Bench](#mt-bench)
- [IFEval](#ifeval)

### **`Model Checkpoints`**

Our models trained with ORPO can be found in:

- [X] **Mistral-ORPO-Capybara-7k**: 🤗 kaist-ai/mistral-orpo-capybara-7k
- [X] **Mistral-ORPO-⍺**: 🤗 kaist-ai/mistral-orpo-alpha
- [X] **Mistral-ORPO-β**: 🤗 kaist-ai/mistral-orpo-beta

And the corresponding logs for the average log probabilities of chosen/rejected responses during training are reported in:

- [X] **Mistral-ORPO-Capybara-7k**: TBU
- [X] **Mistral-ORPO-⍺**: Wandb Report for Mistral-ORPO-⍺
- [X] **Mistral-ORPO-β**: Wandb Report for Mistral-ORPO-β

 

### **`AlpacaEval`**

Description of the image
Figure 1. AlpacaEval 2.0 score for the models trained with different alignment methods.

 

### **`MT-Bench`**

Description of the image
Figure 2. MT-Bench result by category.

 

### **`IFEval`**

IFEval scores are measured with EleutherAI/lm-evaluation-harness by applying the chat template. The scores for Llama-2-Chat (70B), Zephyr-β (7B), and Mixtral-8X7B-Instruct-v0.1 are originally reported in this tweet.

| **Model Type** | **Prompt-Strict** | **Prompt-Loose** | **Inst-Strict** | **Inst-Loose** |
|--------------------|:-----------------:|:----------------:|:---------------:|----------------|
| **Llama-2-Chat (70B)** | 0.4436 | 0.5342 | 0.5468 | 0.6319 |
| **Zephyr-β (7B)** | 0.4233 | 0.4547 | 0.5492 | 0.5767 |
| **Mixtral-8X7B-Instruct-v0.1** | 0.5213 | **0.5712** | 0.6343 | **0.6823** |
| **Mistral-ORPO-⍺ (7B)** | 0.5009 | 0.5083 | 0.5995 | 0.6163 |
| **Mistral-ORPO-β (7B)** | **0.5287** | 0.5564 | **0.6355** | 0.6619 |