https://github.com/xiandong79/interference-aware-cluster-management
https://github.com/xiandong79/interference-aware-cluster-management
interference-mitigation management-server
Last synced: 3 months ago
JSON representation
- Host: GitHub
- URL: https://github.com/xiandong79/interference-aware-cluster-management
- Owner: xiandong79
- Created: 2017-08-31T01:21:06.000Z (almost 8 years ago)
- Default Branch: master
- Last Pushed: 2017-09-01T07:24:15.000Z (almost 8 years ago)
- Last Synced: 2025-01-31T15:34:40.754Z (5 months ago)
- Topics: interference-mitigation, management-server
- Language: HTML
- Size: 37.8 MB
- Stars: 3
- Watchers: 1
- Forks: 2
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Interference Aware Cluster Management
## Background
### [Relevant papers](https://github.com/xiandong79/Interference-Aware-Cluster-Management/tree/master/papers)
1. Paragon: QoS-Aware Scheduling for Heterogeneous Datacenters - ASPLOS ’13
2. Quasar: Resource-Efficient and QoS-Aware Cluster Management - ASPLOS ’14## [Testbed Installation](https://github.com/xiandong79/Interference-Aware-Cluster-Management/tree/master/installation-docs)
1. SPEC CPU2006 单线程负载
2. memcached 内存型数据库
3. parsec 多线程负载
4. websearch Latency critical 任务
5. perf/lib-perf 任务性能检测## [Test & collect data](https://github.com/xiandong79/Interference-Aware-Cluster-Management/tree/master/shell-scripts)
1. [bash_basic.sh](https://github.com/xiandong79/Interference-Aware-Cluster-Management/blob/master/shell-scripts/bash_basic.sh) - SPEC CPU 2006 任务间相互干扰
2. [memcached+spec2006.sh](https://github.com/xiandong79/Interference-Aware-Cluster-Management/blob/master/shell-scripts/memcached%2Bspec2006.sh) - memcached+spec2006 任务间相互干扰
3. [ibench.sh](https://github.com/xiandong79/Interference-Aware-Cluster-Management/blob/master/shell-scripts/ibench.sh) [autorun_ibench.sh](https://github.com/xiandong79/Interference-Aware-Cluster-Management/blob/master/shell-scripts/autorun_ibench.sh) - SPEC CPU 2006 任务在 ibench 七种不同压力干扰下的运行状况## Data Analysis
1. [ALS_SGD_MF.py](https://github.com/xiandong79/Interference-Aware-Cluster-Management/blob/master/data-analysis-scripts/ALS_SGD_MF.py)
```
# Train rmse: 0.632234683903
# Test rmse: 0.958863923627
```
2. [gridsearch_ALS_SGD_MF.py](https://github.com/xiandong79/Interference-Aware-Cluster-Management/blob/master/data-analysis-scripts/gridsearch_ALS_SGD_MF.py) - 可遍历地求出最优超参数3. [基于服务器 IPS参数 的推荐系统-20170823版本.html](https://github.com/xiandong79/Interference-Aware-Cluster-Management/blob/master/data-analysis-scripts/基于服务器%20IPS参数%20的推荐系统-20170823版本.html)
```
载入原始数据¶
In [2]:
# Load data from disknames = ['workload_id', 'pressure_id', 'rating']
df = pd.read_csv('/Users/dong/Desktop/体系-数据分析/IPS-rating-final.csv',delimiter=",", names=names)print(df.shape)
num_workloads = df.workload_id.unique().shape[0]
num_pressures = df.pressure_id.unique().shape[0]print(num_workloads, "kinds of workloads")
print(num_pressures, "kinds of pressures")
(86, 3)
12 kinds of workloads
8 kinds of pressures
```
## Results and Conclusion
在未来的使用中,每次任务提交时,只需在IPS-rating-final.csv文件中,继续补充 此种workload_id 的在 pressure_id 测试值(2-3次),即可得出此种 workload在每一种压力下的 “百分制评分”。 Greedily选择最高评分即可。```
Prediction Result...
[[ 53 81 52 74 100 96 99 101]
[ 49 79 49 72 98 94 97 100]
[ 50 79 48 71 99 95 98 100]
[ 51 78 47 70 97 93 97 99]
[ 50 78 49 71 97 94 97 99]
[ 50 78 50 71 96 93 95 98]
[ 51 78 47 70 97 93 97 99]
[ 86 81 58 76 88 87 92 95]
[ 49 80 51 73 100 96 99 101]
[ 50 79 50 72 98 94 97 100]
[ 69 80 70 77 87 85 87 88]
[ 79 80 78 79 82 81 82 83]]
```


