Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/xiaochus/MobileNetV3
A Keras implementation of MobileNetV3.
https://github.com/xiaochus/MobileNetV3
image-classification keras mobilenetv3
Last synced: 2 months ago
JSON representation
A Keras implementation of MobileNetV3.
- Host: GitHub
- URL: https://github.com/xiaochus/MobileNetV3
- Owner: xiaochus
- License: mit
- Created: 2019-05-18T04:51:07.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2020-03-23T08:02:12.000Z (almost 5 years ago)
- Last Synced: 2024-08-31T22:38:22.761Z (4 months ago)
- Topics: image-classification, keras, mobilenetv3
- Language: Python
- Size: 261 KB
- Stars: 237
- Watchers: 11
- Forks: 84
- Open Issues: 10
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-image-classification - unofficial-keras : https://github.com/xiaochus/MobileNetV3
- awesome-image-classification - unofficial-keras : https://github.com/xiaochus/MobileNetV3
README
# MobileNetV3
A Keras implementation of MobileNetV3 and Lite R-ASPP Semantic Segmentation (Under Development).According to the paper: [Searching for MobileNetV3](https://arxiv.org/abs/1905.02244?context=cs)
## Requirement
- Python 3.6
- Tensorflow-gpu 1.10.0
- Keras 2.2.4## Train the model
The ```config/config.json``` file provide a config for training.
### Train the classification
**The dataset folder structure is as follows:**
| - data/
| - train/
| - class 0/
| - image.jpg
....
| - class 1/
....
| - class n/
| - validation/
| - class 0/
| - class 1/
....
| - class n/**Run command below to train the model:**
```
python train_cls.py
```## Acknowledgement
Thank [@fzyzcjy](https://github.com/fzyzcjy) for your help in this project.
## Reference
@article{MobileNetv3,
title={Searching for MobileNetV3},
author={Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang Vijay Vasudevan, Quoc V. Le, Hartwig Adam},
journal={arXiv preprint arXiv:1905.02244},
year={2019}
}## Copyright
See [LICENSE](LICENSE) for details.