Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/xiaoyan07/SAM_MLoRA
https://github.com/xiaoyan07/SAM_MLoRA
Last synced: about 1 month ago
JSON representation
- Host: GitHub
- URL: https://github.com/xiaoyan07/SAM_MLoRA
- Owner: xiaoyan07
- License: mit
- Created: 2024-04-23T08:21:50.000Z (9 months ago)
- Default Branch: main
- Last Pushed: 2024-09-12T11:42:13.000Z (4 months ago)
- Last Synced: 2024-09-12T22:58:29.101Z (4 months ago)
- Language: Python
- Size: 2.25 MB
- Stars: 2
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- Awesome-Segment-Anything - [code
README
Multi-LoRA Fine-Tuned Segment Anything Model for Extraction of Urban Man-Made Objects
Xiaoyan LU and
Qihao WENG[[`Paper`](https://ieeexplore.ieee.org/abstract/document/10637992)]
## Multi-LoRA Fine-Tuned SAM Framework
## The training dataset
1. [DeepGlobe Road Training Dataset ](https://competitions.codalab.org/competitions/18467#participate-get_data): 4696 samples
2. [SpaceNet Building AOI2 and AOI4 Dataset ](https://spacenet.ai/spacenet-buildings-dataset-v2/): 8429 samples## The validation set
1. [DeepGlobe Road Test Dataset ](https://competitions.codalab.org/competitions/18467#participate-get_data): 1530 samples
2. [SpaceNet Building AOI3 and AOI5 Dataset ](https://spacenet.ai/spacenet-buildings-dataset-v2/): 1148 (Paris) and 1101 (Khartoum) samples
3. [The WHU building (Christchurch) dataset](http://gpcv.whu.edu.cn/data/building_dataset.html): 2416 samples##
2. The trained weights of SAM_Adapter, SAM_LoRA (r=96), and SAM_MLoRA (r=32,n=3) are released at [Baidu Drive](https://pan.baidu.com/s/1_uscV5L8mDt4kihwt1iSqg), Code: MODE## Road Extraction
SAM_Adapter
```
python train_sam_adapter.py --name='b_adapter_sam'
```SAM_LoRA (r=96)
```
python train_sam_adapter.py --name='b_adapter_sam_lora96_96'
```SAM_MLoRA (r=32,n=3)
```
python train_sam_adapter.py --name='b_adapter_sam_multi_lora'
```## Building Extraction
SAM_Adapter
```
python train_sam_adapter_build.py --name='b_adapter_sam_sp24'
```SAM_LoRA (r=96)
```
python train_sam_adapter_build.py --name='b_adapter_sam_lora96_96_sp24'
```SAM_MLoRA (r=32,n=3)
```
python train_sam_adapter_build.py --name='b_adapter_sam_multi_lora32_sp24'
```## Citation
If this code or dataset contributes to your research, please kindly consider citing our paper :)
```
@article{Lu2024MLoRA,
title = {Multi-LoRA Fine-Tuned Segment Anything Model for Urban Man-Made Object Extraction},
author = {Xiaoyan LU and Qihao Weng},
journal = {IEEE Transactions on Geoscience and Remote Sensing},
volume = {62},
pages = {1-19},
year = {2024},
doi = {https://doi.org/10.1109/TGRS.2024.3435745}
}
```