Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/xingyizhou/GTR

Global Tracking Transformers, CVPR 2022
https://github.com/xingyizhou/GTR

large-vocabulary tracking transformers

Last synced: 3 days ago
JSON representation

Global Tracking Transformers, CVPR 2022

Awesome Lists containing this project

README

        

# Global Tracking Transformers

> [**Global Tracking Transformers**](http://arxiv.org/abs/2203.13250),
> Xingyi Zhou, Tianwei Yin, Vladlen Koltun, Philipp Krähenbühl,
> *CVPR 2022 ([arXiv 2203.13250](http://arxiv.org/abs/2203.13250))*

## Features

- Object association within a long temporal window (32 frames).

- Classification after tracking for long-tail recognition.

- "Detector" of global trajectories.

## Installation

See [installation instructions](docs/INSTALL.md).

## Demo

Run our demo using Colab (no GPU needed): [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1vW1sSQc0daGSNjdBXdD-wFEPKT27qwDe)

Try Replicate web demo here [![Replicate](https://replicate.com/xingyizhou/gtr/badge)](https://replicate.com/xingyizhou/gtr)

We use the default detectron2 [demo interface](https://github.com/facebookresearch/detectron2/blob/main/GETTING_STARTED.md). For example, to run [TAO model](configs/GTR_TAO_DR2101.yaml) on an example video (video source: TAO/YFCC100M dataset), download the [model](https://drive.google.com/file/d/1TqkLpFZvOMY5HTTaAWz25RxtLHdzQ-CD/view?usp=sharing) and run

~~~
python demo.py --config-file configs/GTR_TAO_DR2101.yaml --video-input docs/yfcc_v_acef1cb6d38c2beab6e69e266e234f.mp4 --output output/demo_yfcc.mp4 --opts MODEL.WEIGHTS models/GTR_TAO_DR2101.pth
~~~

If setup correctly, the output on `output/demo_yfcc.mp4` should look like:

## Benchmark evaluation and training

Please first [prepare datasets](datasets/README.md), then check our [MODEL ZOO](docs/MODEL_ZOO.md) to reproduce results in our paper. We highlight key results below:

- MOT17 test set

| MOTA | IDF1 | HOTA | DetA | AssA | FPS |
|-----------|--------|--------|-------|-------|-----|
| 75.3 | 71.5 | 59.1 | 61.6 | 57.0 | 19.6|

- TAO test set

| Track mAP | FPS |
|-------------|--------|
| 20.1 | 11.2 |

## License

The majority of GTR is licensed under the [Apache 2.0 license](LICENSE), however portions of the project are available under separate license terms: [trackeval](https://github.com/JonathonLuiten/TrackEval) in `gtr/tracking/trackeval/`, is licensed under the MIT license. [FairMOT](https://github.com/ifzhang/FairMOT) in `gtr/tracking/local_tracker` is under MIT license. Please see [NOTICE](NOTICE) for license details.
The [demo video](docs/yfcc_v_acef1cb6d38c2beab6e69e266e234f) is from [TAO dataset](http://taodataset.org/#), which is originally from [YFCC100M dataset](https://multimediacommons.wordpress.com/yfcc100m-core-dataset/). Please be aware of the original dataset license.

## Citation

If you find this project useful for your research, please use the following BibTeX entry.

@inproceedings{zhou2022global,
title={Global Tracking Transformers},
author={Zhou, Xingyi and Yin, Tianwei and Koltun, Vladlen and Kr{\"a}henb{\"u}hl, Philipp},
booktitle={CVPR},
year={2022}
}