Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/xingyizhou/GTR
Global Tracking Transformers, CVPR 2022
https://github.com/xingyizhou/GTR
large-vocabulary tracking transformers
Last synced: 3 days ago
JSON representation
Global Tracking Transformers, CVPR 2022
- Host: GitHub
- URL: https://github.com/xingyizhou/GTR
- Owner: xingyizhou
- Created: 2022-03-24T18:56:53.000Z (over 2 years ago)
- Default Branch: master
- Last Pushed: 2022-08-02T18:47:06.000Z (over 2 years ago)
- Last Synced: 2024-11-09T00:52:50.865Z (8 days ago)
- Topics: large-vocabulary, tracking, transformers
- Language: Python
- Homepage:
- Size: 2.59 MB
- Stars: 374
- Watchers: 11
- Forks: 57
- Open Issues: 32
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-multiple-object-tracking - [code
README
# Global Tracking Transformers
> [**Global Tracking Transformers**](http://arxiv.org/abs/2203.13250),
> Xingyi Zhou, Tianwei Yin, Vladlen Koltun, Philipp Krähenbühl,
> *CVPR 2022 ([arXiv 2203.13250](http://arxiv.org/abs/2203.13250))*## Features
- Object association within a long temporal window (32 frames).
- Classification after tracking for long-tail recognition.
- "Detector" of global trajectories.
## Installation
See [installation instructions](docs/INSTALL.md).
## Demo
Run our demo using Colab (no GPU needed): [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1vW1sSQc0daGSNjdBXdD-wFEPKT27qwDe)
Try Replicate web demo here [![Replicate](https://replicate.com/xingyizhou/gtr/badge)](https://replicate.com/xingyizhou/gtr)
We use the default detectron2 [demo interface](https://github.com/facebookresearch/detectron2/blob/main/GETTING_STARTED.md). For example, to run [TAO model](configs/GTR_TAO_DR2101.yaml) on an example video (video source: TAO/YFCC100M dataset), download the [model](https://drive.google.com/file/d/1TqkLpFZvOMY5HTTaAWz25RxtLHdzQ-CD/view?usp=sharing) and run
~~~
python demo.py --config-file configs/GTR_TAO_DR2101.yaml --video-input docs/yfcc_v_acef1cb6d38c2beab6e69e266e234f.mp4 --output output/demo_yfcc.mp4 --opts MODEL.WEIGHTS models/GTR_TAO_DR2101.pth
~~~If setup correctly, the output on `output/demo_yfcc.mp4` should look like:
## Benchmark evaluation and training
Please first [prepare datasets](datasets/README.md), then check our [MODEL ZOO](docs/MODEL_ZOO.md) to reproduce results in our paper. We highlight key results below:
- MOT17 test set
| MOTA | IDF1 | HOTA | DetA | AssA | FPS |
|-----------|--------|--------|-------|-------|-----|
| 75.3 | 71.5 | 59.1 | 61.6 | 57.0 | 19.6|- TAO test set
| Track mAP | FPS |
|-------------|--------|
| 20.1 | 11.2 |## License
The majority of GTR is licensed under the [Apache 2.0 license](LICENSE), however portions of the project are available under separate license terms: [trackeval](https://github.com/JonathonLuiten/TrackEval) in `gtr/tracking/trackeval/`, is licensed under the MIT license. [FairMOT](https://github.com/ifzhang/FairMOT) in `gtr/tracking/local_tracker` is under MIT license. Please see [NOTICE](NOTICE) for license details.
The [demo video](docs/yfcc_v_acef1cb6d38c2beab6e69e266e234f) is from [TAO dataset](http://taodataset.org/#), which is originally from [YFCC100M dataset](https://multimediacommons.wordpress.com/yfcc100m-core-dataset/). Please be aware of the original dataset license.## Citation
If you find this project useful for your research, please use the following BibTeX entry.
@inproceedings{zhou2022global,
title={Global Tracking Transformers},
author={Zhou, Xingyi and Yin, Tianwei and Koltun, Vladlen and Kr{\"a}henb{\"u}hl, Philipp},
booktitle={CVPR},
year={2022}
}