Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/xinshengwang/icassp2021_paper_list-vc
ICASSP 2021 accepted papers in term of voice conversion (VC)
https://github.com/xinshengwang/icassp2021_paper_list-vc
Last synced: 16 days ago
JSON representation
ICASSP 2021 accepted papers in term of voice conversion (VC)
- Host: GitHub
- URL: https://github.com/xinshengwang/icassp2021_paper_list-vc
- Owner: xinshengwang
- Created: 2021-04-09T09:00:30.000Z (almost 4 years ago)
- Default Branch: main
- Last Pushed: 2021-04-11T08:34:48.000Z (almost 4 years ago)
- Last Synced: 2023-03-05T00:30:33.942Z (almost 2 years ago)
- Size: 825 KB
- Stars: 18
- Watchers: 2
- Forks: 4
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# ICASSP2021_paper_list-VC
Papers accepted to ICASSP 2021 in term of voice conversion (VC)- [ICASSP2021_paper_list-VC](#icassp2021_paper_list-vc)
- [VC](#vc)
- [Zero-shot and low-resource VC](#zero-shot-and-low-resource-vc)
- [cross-lingual VC](#cross-lingual-vc)
- [Toolkit](#toolkit)
- [Dataset](#dataset)
- [Reading Note](#reading-note)
- [1. Fragmentvc: any-to-any voice conversion by end-to-end extracting and fusing fine-grained voice fragments with attention.](#1-fragmentvc-any-to-any-voice-conversion-by-end-to-end-extracting-and-fusing-fine-grained-voice-fragments-with-attention)
- [2. Maskcyclegan-vc: learning non-parallel voice conversion with filling in frames.](#2-maskcyclegan-vc-learning-non-parallel-voice-conversion-with-filling-in-frames)
- [3. PPG-based singing voice conversion with adversarial representation learning.](#3-ppg-based-singing-voice-conversion-with-adversarial-representation-learning)
- [4. Again-vc: a one-shot voice conversion using activation guidance and adaptive instance normalization.](#4-again-vc-a-one-shot-voice-conversion-using-activation-guidance-and-adaptive-instance-normalization)
- [5. Seen and unseen emotional style transfer for voice conversion with a new emotional speech dataset.](#5--seen-and-unseen-emotional-style-transfer-for-voice-conversion-with-a-new-emotional-speech-dataset)
- [6. Towards natural and controllable cross-lingual voice conversion based on neural tts model and phonetic posteriorgram](#6-towards-natural-and-controllable-cross-lingual-voice-conversion-based-on-neural-tts-model-and-phonetic-posteriorgram)
- [7. End-to-end lyrics recognition with voice to singing style transfer.](#7-end-to-end-lyrics-recognition-with-voice-to-singing-style-transfer)## VC
1. [Maskcyclegan-vc: learning non-parallel voice conversion with filling in frames.](#2-maskcyclegan-vc-learning-non-parallel-voice-conversion-with-filling-in-frames-non-parallel-vc) ([paper](https://arxiv.org/pdf/2102.12841.pdf),[page](http://www.kecl.ntt.co.jp/people/kaneko.takuhiro/projects/maskcyclegan-vc/index.html))
2. Non-autoregressive sequence-to-sequence voice conversion.
3. Non-parallel many-to-many voice conversion by knowledge transfer from a text-to-speech model.
4. Non-parallel many-to-many voice conversion using local linguistic tokens.
5. [PPG-based singing voice conversion with adversarial representation learning.](#3-ppg-based-singing-voice-conversion-with-adversarial-representation-learning)([paper](https://arxiv.org/pdf/2010.14804.pdf),[demo](https://lzh1.github.io/singVC/))## Zero-shot and low-resource VC
1. [Again-vc: a one-shot voice conversion using activation guidance and adaptive instance normalization.](#4-again-vc-a-one-shot-voice-conversion-using-activation-guidance-and-adaptive-instance-normalization) ([paper](https://arxiv.org/pdf/2011.00316.pdf),[code](https://github.com/KimythAnly/AGAIN-VC))
2. [Any-to-One Sequence-to-Sequence Voice Conversion using Self-Supervised Discrete Speech Representations.](#5-any-to-one-sequence-to-sequence-voice-conversion-using-self-supervised-discrete-speech-representations) ([paper](https://arxiv.org/pdf/2010.12231.pdf),[Espnet parameter](https://gist.github.com/unilight/a48f99cf6a47c0b4e5b96fe1d6e59397))
3. [Fragmentvc: any-to-any voice conversion by end-to-end extracting and fusing fine-grained voice fragments with attention.](#1-fragmentvc-any-to-any-voice-conversion-by-end-to-end-extracting-and-fusing-fine-grained-voice-fragments-with-attention-non-parallel-vc) ([paper](https://arxiv.org/pdf/2010.14150.pdf),[code](https://github.com/yistLin/FragmentVC))
4. [End-to-end lyrics recognition with voice to singing style transfer.](#7-end-to-end-lyrics-recognition-with-voice-to-singing-style-transfer) ([paper](https://arxiv.org/pdf/2102.08575.pdf),[demo](https://github.com/iiscleap/V2S_Samples))
5. One-shot voice conversion based on speaker aware module
6. [Seen and unseen emotional style transfer for voice conversion with a new emotional speech dataset.](#5--seen-and-unseen-emotional-style-transfer-for-voice-conversion-with-a-new-emotional-speech-dataset) ([paper](https://arxiv.org/pdf/2010.14794.pdf),[code](https://kunzhou9646.github.io/controllable-evc/))
7. [Towards low-resource stargan voice conversion using weight adaptive instance normalization.](#6-towards-natural-and-controllable-cross-lingual-voice-conversion-based-on-neural-tts-model-and-phonetic-posteriorgram) ([paper](https://arxiv.org/pdf/2010.11646.pdf),[code](https://github.com/MingjieChen/LowResourceVC))
8. Zero-shot voice conversion with adjusted speaker embeddings and simple acoustic features.
9. Extending parrotron: an end-to-end, speech conversion and speech recognition model for atypical speech.
10. Zero-shot voice conversion with adjusted speaker embeddings and simple acoustic features.## cross-lingual VC
1. Multi-task wavernn with an integrated architecture for cross-lingual voice conversion
2. [Towards natural and controllable cross-lingual voice conversion based on neural tts model and phonetic posteriorgram](#6-towards-natural-and-controllable-cross-lingual-voice-conversion-based-on-neural-tts-model-and-phonetic-posteriorgram) ([paper](https://arxiv.org/pdf/2102.01991.pdf))## Toolkit
1. crank: an open-source software for nonparallel voice conversion based on vector-quantized variational autoencoder ([paper](https://arxiv.org/pdf/2103.02858.pdf),[code](https://github.com/k2kobayashi/crank))
## Dataset
* [EVC: multi-speaker and multi-lingual emotional speech. (parallel voice conversion dataset)](https://github.com/HLTSingapore/Emotional-Speech-Data
) 包含中英文各10个说话人,共计350条平行语料。每句话的平局时长为2.9s. 情感类别包括:1) happy, 2) sad, 3) neutral, 4) angry, and 5) surprise.## Reading Note
### 1. Fragmentvc: any-to-any voice conversion by end-to-end extracting and fusing fine-grained voice fragments with attention.
* 概要:通过Wav2Vec获取source speaker说话人无关的语音内容特征,利用cross-attention的形式从target speaker的语音特征中获取说话人信息,并在decode阶段重构具有source speaker内容和target speaker音色的梅尔普。**通过两阶段训练的方式,可以在不利用disentangle等策略和平行语料的条件下,仅通过L1损失实现模型的训练。**
* code: https://github.com/yistLin/FragmentVC* 利用在Librispeech上预训练的wav2vec提取source speaker的语义内容特征。
* Target encoder由一维卷积和激活函数ReLU构成。
* Extractor: Transformer with self-attention and cross-attention。三个Extractor和对应的三个Conn1d构成了stack式的连接。
* Smoother: Transformer with only self-attention. Smoother和Extractor中的feed-forward layer由一层一维卷积代替。
* 由于Wav2Vec不可避免的保留了一些源说话人的信息,作者在Extractor 1中去掉了残差连接,认为这样可以尽可能剔除源说话人的信息。
* **训练策略:** 第一阶段:利用同一个人的同一句话同时作为target和source的输入,以训练模型从Wav2Vec特征重构mel谱特征的能力。第二阶段:target和source的输入依旧来自于同一个人,不同的是,target的输入是10个语音片段的拼接,而source的输入只是一句话。需要注意的是,在开始阶段,source的输入来自于输入target的十句话中的一句,随着训练的进行,逐渐增大来自这十句以外的概率,并最终使得source的输入是来自target十句的概率为0.### 2. Maskcyclegan-vc: learning non-parallel voice conversion with filling in frames.
* 概要:在CycleGAN-VC2基础上,借鉴Bert及image inpainting的训练方法,对source speech添加mask, 并训练conversion网络对mask的区域进行fill.
* 文中尝试了几种不同的mask概率,包括:1)固定概率 2)在某一个概率范围内的随机选择. 实验发现,mask在概率[0,50]随机选择时效果最好。
* 文中尝试了几种不同的mask方式,包括:1)连续帧的mask 2)不连续帧的mask 3)对某一个频带范围进行mask 4)离散点的mask. 实验发现连续帧的mask形式,也即示意图中的$m$表现最好。### 3. PPG-based singing voice conversion with adversarial representation learning.
* 概要: 借助PPG特征获取source singer的文本内容信息。但是由于在SVC中源说话人的韵律、节奏等也是很重要的信息,所以文中有引入了Singer Confusion Module来补充源说话人除了音色以外的信息。
* Singer Confusion Module的训练采用了对抗训练的方式,学习一个singer-indpendent的mel谱特征。为了进一步确保所学特征包含了除音色(singer identity)以外的其他信息,增加了一个Mel-Regressive Representation learning Module。该模块通过将学习到的mel特征和speaker embedding融合并重构原始song.
### 4. Again-vc: a one-shot voice conversion using activation guidance and adaptive instance normalization.
* 概要:Again-VC在AdaIN-VC的基础上去掉了单独的Speaker Encoder, 转而利用Content Encoder中的instance normalization操作获取均值和方差信息来传递speaker信息。这一speark信息在decode过程中,通过与content embedding进行Adaptive instance normalization (AdaIN) 操作进行speaker信息的传递。* code: https://github.com/KimythAnly/AGAIN-VC
* 关于instance normalization (IN): 对于一个mel谱$Z$, IN操作如下为:
$\operatorname{IN}(Z)=\frac{Z-\mu(Z)}{\sigma(Z)}$,其中平均值$\mu$和方差$\sigma$是基于channel wise的。在AdaIN-VC中,作者认为这种时间不变性的参数$\mu$和$\sigma$是可以代表speaker信息的。* Adaptive instance nomalization (AdapIN) 可以看作是IN的逆操作,不过这里采用的$\mu$和$\sigma$是目标说话的参数。比如,如果我们希望保留$H$的内容,但将风格迁移到$Z$的风格上,AdapIN的操作可表示为:$\operatorname{AdaIN}(\boldsymbol{H}, \mu(\boldsymbol{Z}), \sigma(\boldsymbol{Z}))=\sigma(\boldsymbol{Z}) \operatorname{IN}(\boldsymbol{H})+\mu(\boldsymbol{Z})$
* 文中有意思的一点是关于激活函数的选择。作者认为,通过在encoder的输出层添加激活函数(如图中左下角的Activations)可以更好的去除content embedding中的源说话人信息。文中对比了几种不同的激活函数,发现sigmoid的效果最好。如下表所示,分别利用content embedding ($C$)和由$\mu$及$\sigma$组成的speaker info $S$训练一个speaker的分类器,理想状态下基于$C$的精度越低越好,而基于$S$的精度应该越高越好:
### 5. Seen and unseen emotional style transfer for voice conversion with a new emotional speech dataset.
* 概要:利用autoenoder的形式对语音的情感信息进行解耦,并借助额外的情感特征提取器获取目标情感信息,从而重构出具有目标情感的语音。这里采用了VAW-GAN的形式。
* Released Data: https://github.com/HLTSingapore/Emotional-Speech-Data
* Code: https://kunzhou9646.github.io/controllable-evc/* 与VC不同的是,emtional style transfer只transform情感信息,而保留目标说话人的内容和音色(speaker identiy)信息.
* 训练采用了平行语料。### 6. Towards natural and controllable cross-lingual voice conversion based on neural tts model and phonetic posteriorgram
* 概要:利用PPGs特征作为桥梁,将cross-lingual voice coversion问题实质上是转换成了source speech - ASR - TTS问题。
* Controllable: 由于该模型是的输入和输出是等长的,所以通过对输入的PPGs进行上采样或着下采样可以起到调节语速的作用。从这个角度上将,作者将之称为Controllable.
* 文中TTS的AM采用了Fastspeech, 所以作者也将文中提出的模型称为FastSpeech-VC. Vocoder 采用了LPCNet.### 7. End-to-end lyrics recognition with voice to singing style transfer.
* 概要: 为了解决端到端歌词转译数据不足的问题,文中提出了一种将自然语音转为歌唱嗓音的一种数据增强的方法(V2S, voice to singing)。具体方法是借助了语音和成系统WORLD, 以歌声的基频f0和自然语音的谱包络和aperiodic参数为输入,生成歌声数据。
* 相比于随机选择歌声和自然语音,作者发现选择基频相近的两组数据可以合成更好的歌声结果。