Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/xkomil/datasciencesummerstudy
I want to document in this repository all my studying data science topics
https://github.com/xkomil/datasciencesummerstudy
data-science data-visualization machine-learning meteostat numpy pandas seaborn sklearn streamlit-webapp
Last synced: 11 days ago
JSON representation
I want to document in this repository all my studying data science topics
- Host: GitHub
- URL: https://github.com/xkomil/datasciencesummerstudy
- Owner: xKomil
- License: mit
- Created: 2024-07-15T20:46:43.000Z (6 months ago)
- Default Branch: main
- Last Pushed: 2024-08-13T23:05:21.000Z (5 months ago)
- Last Synced: 2024-11-05T23:18:42.852Z (about 2 months ago)
- Topics: data-science, data-visualization, machine-learning, meteostat, numpy, pandas, seaborn, sklearn, streamlit-webapp
- Language: Jupyter Notebook
- Homepage:
- Size: 7.16 MB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# DataScienceSummerStudy
I want to document in this repository all my studying data science topics# Numpy
FundamentalsMore Info [here](_numpy/_numpy.md)
# Pandas
FundamentalsMore Info [here](_pandas/_pandas.md)
# EDA Ekspolarcyjna analiza danych
FundamentalsMore Info [here](_EDA/_eda.md)
# Data Visualization
FundamentalsMore Info [here](_data_visualization/_data_visualization.md)
# Data cleaning
FundamentalsMore Info [here](data_cleaning/data_cleaning.md)
# ETL
## Extract
I will start with the most simple connection to working on more complicated
You can see progress [here](_Etl/_simple/_simple.md)# Machine learning
I will try to use a lots of topis from fundamentals to more complex
- [fundamentals](_machine_learning/_fundamentals/1)
## Supervised learning:
- [regression](_machine_learning/_fundamentals/2)
- [classification](_machine_learning/_fundamentals/3)