Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/xlisp/visualization-machine-learning
Visualization Python & R Machine Learning, Deep Learning, Reinforcement Learning
https://github.com/xlisp/visualization-machine-learning
deep-learning machine-learning python pytorch r reinforcement-learning statistics
Last synced: 29 days ago
JSON representation
Visualization Python & R Machine Learning, Deep Learning, Reinforcement Learning
- Host: GitHub
- URL: https://github.com/xlisp/visualization-machine-learning
- Owner: xlisp
- Created: 2017-06-30T02:29:33.000Z (over 7 years ago)
- Default Branch: master
- Last Pushed: 2024-12-15T03:33:40.000Z (about 1 month ago)
- Last Synced: 2024-12-23T15:03:58.988Z (about 1 month ago)
- Topics: deep-learning, machine-learning, python, pytorch, r, reinforcement-learning, statistics
- Language: Python
- Homepage:
- Size: 54.4 MB
- Stars: 23
- Watchers: 3
- Forks: 3
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Visualization Python & R Machine Learning, Deep Learning, Reinforcement Learning
## First principle
* Find the same probability distribution in a large amount of data and make predictions based on the same probability distribution: `y = f(x)`
* Just like learning a function relationship, the inverse function or reverse engineering function requires DL. You just know that the data has a certain pattern and then guess what the original function that generated the data is. For example, you train to get a calculator neural network.
* The idea of high-dimensional space: the code is cut into high-dimensional space, and then a very detailed high-dimensional classification is done to separate it. Then the search is also high-dimensional, just like the code, it is entered into the treesitter to do training to obtain logical learning relationships. Most of NLP is a multi-classification problem in high-dimensional space.
* Collect the input x and output y around you as training data, and mine their mapping relationship f(x) at any time. You can use GPT to generate certain data for your model training needs or write crawler to get you need data.- [Python & R Machine Learning](#python--r-machine-learning)
- [R Machine Learning](https://github.com/chanshunli/jim-emacs-machine-learning/tree/master/R-Lang-machine-learning)
- [least squares method](#least-squares-method)
- [least squares method by neural network](#least-squares-method-by-neural-network)
- [nonlinear fitting](#nonlinear-fitting)
- [polar coordinate classification](#polar-coordinate-classification)
- [mnist ocr](#mnist-ocr)
- [use mnist](#use-mnist)
- [calculator neural network](#calculator-neural-network)
- [Data cleaning](#data-cleaning)
- [SVM](#svm)
- [kmeans](#kmeans)
- [Decision Tree Classifier](#decision-tree-classifier)
- [Reinforcement Learning (DQN)](#reinforcement-learning-dqn)
- [Flappy bird dqn](#flappy-bird-dqn)
- [SGD](#sgd)
- [CNN with Attention](#CNN-with-Attention)
- [LSTM generator](#LSTM-generator)
- [Seq2seq number translator](#seq2seq-number-translator)
- [Transformer generator](#Transformer-generator)## init env
```bash
conda create -n emacspy python=3.11
conda activate emacspy
poetry install
```## least squares method
```python
import numpy as np
import matplotlib.pyplot as plt# Example data points
X = np.array([1, 2.2, 3, 4, 5])
y = np.array([2, 4, 6.3, 8, 11])# Add a column of ones to X for the intercept term (bias)
X_b = np.c_[np.ones((X.shape[0], 1)), X] # X_b is X with a bias column# Calculate the best fit line parameters using the Normal Equation
theta_best = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y)# Print the parameters (intercept and slope)
print(f"Intercept: {theta_best[0]}")
print(f"Slope: {theta_best[1]}")# Predict values using the model
y_pred = X_b.dot(theta_best)# Plot the data points and the best fit line
plt.scatter(X, y, color='blue', label='Data points')
plt.plot(X, y_pred, color='red', label='Best fit line')
plt.xlabel('X')
plt.ylabel('y')
plt.legend()
plt.show()
```## least squares method by neural network
![](./training_animation.gif)
```python
import torch
import torch.nn as nn
import torch.optim as optim
import matplotlib.pyplot as plt# graph show the pytorch torch.optim.Adam and plot it How it works
# Define a simple linear model
class LinearModel(nn.Module):
def __init__(self):
super(LinearModel, self).__init__()
self.linear = nn.Linear(1, 1)def forward(self, x):
return self.linear(x)# Initialize the model, loss function, and optimizer
model = LinearModel()
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.01)# Generate some synthetic data (y = 2x + 1 with some noise)
x_train = torch.linspace(-1, 1, 100).reshape(-1, 1)
y_train = 2 * x_train + 1 + 0.2 * torch.randn(x_train.size())# List to store the loss values
loss_values = []# Training loop
for epoch in range(1000):
model.train()
optimizer.zero_grad()
outputs = model(x_train)
loss = criterion(outputs, y_train)
loss.backward()
optimizer.step()
loss_values.append(loss.item())
```## nonlinear fitting
![](./training_process.gif)
```python
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt# Step 1: Generate a 100-length random sequence
n = 100
x = torch.linspace(1, 10, n).unsqueeze(1)
y = torch.sin(x) + torch.rand(n, 1) * 0.5# Step 2: Define a simple neural network model for nonlinear fitting
class NonlinearModel(nn.Module):
def __init__(self):
super(NonlinearModel, self).__init__()
self.fc1 = nn.Linear(1, 10)
self.fc2 = nn.Linear(10, 10)
self.fc3 = nn.Linear(10, 1)def forward(self, x):
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return xmodel = NonlinearModel()
# Step 3: Define loss function and optimizer
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)# Step 4: Train the model
epochs = 1000
for epoch in range(epochs):
model.train()# Forward pass
outputs = model(x)
loss = criterion(outputs, y)# Backward pass and optimization
optimizer.zero_grad()
loss.backward()
optimizer.step()if (epoch+1) % 100 == 0:
print(f'Epoch [{epoch+1}/{epochs}], Loss: {loss.item():.4f}')# Step 5: Plot the original data and the fitted curve
model.eval()
with torch.no_grad():
predicted = model(x).numpy()plt.figure(figsize=(10, 5))
plt.plot(x.numpy(), y.numpy(), 'ro', label='Original data')
plt.plot(x.numpy(), predicted, 'b-', label='Fitted curve')
plt.legend()
plt.show()```
## polar coordinate classification```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D# Helper function to convert Cartesian to Polar coordinates
def cartesian_to_polar(x, y, z):
r = torch.sqrt(x**2 + y**2 + z**2)
theta = torch.atan2(y, x)
phi = torch.acos(z / r)
return r, theta, phi# Example data generation (replace with your actual data)
n_samples = 5000
x = torch.randn(n_samples)
y = torch.randn(n_samples)
z = torch.randn(n_samples)
labels = torch.randint(0, 4, (n_samples,)) # Four classes (0, 1, 2, 3)# Convert to polar coordinates
r, theta, phi = cartesian_to_polar(x, y, z)# Combine into a single tensor
data = torch.stack((r, theta, phi), dim=1)# Create a Dataset and DataLoader
dataset = TensorDataset(data, labels)
train_loader = DataLoader(dataset, batch_size=32, shuffle=True)# Define a simple feedforward neural network
class PolarNet(nn.Module):
def __init__(self):
super(PolarNet, self).__init__()
self.fc1 = nn.Linear(3, 64)
self.fc2 = nn.Linear(64, 128)
self.fc3 = nn.Linear(128, 4) # Four output classesdef forward(self, x):
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x# Initialize the model, loss function, and optimizer
model = PolarNet()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)# Training loop
for epoch in range(20): # Number of epochs
for inputs, targets in train_loader:
# Forward pass
outputs = model(inputs)
loss = criterion(outputs, targets)# Backward pass and optimization
optimizer.zero_grad()
loss.backward()
optimizer.step()print(f'Epoch {epoch+1}/20, Loss: {loss.item()}')
# After training, evaluate the model on the entire dataset for visualization
with torch.no_grad():
predicted_labels = model(data).argmax(dim=1)# Plotting the results in 3D
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')# Convert polar back to Cartesian for plotting
x_cartesian = r * torch.sin(phi) * torch.cos(theta)
y_cartesian = r * torch.sin(phi) * torch.sin(theta)
z_cartesian = r * torch.cos(phi)# Plot the 3D scatter plot
scatter = ax.scatter(x_cartesian, y_cartesian, z_cartesian, c=predicted_labels, cmap='viridis', marker='o')# Add color bar and labels
plt.colorbar(scatter, ax=ax)
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
plt.title('3D Visualization of PolarNet Classifications')
plt.show()
```## mnist ocr
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torchvision import datasets, transforms
from torch.utils.data import DataLoaderbatch_size = 64
learning_rate = 0.01
epochs = 100
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
test_dataset = datasets.MNIST(root='./data', train=False, download=True, transform=transform)
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(28 * 28, 128)
self.fc2 = nn.Linear(128, 64)
self.fc3 = nn.Linear(64, 10)def forward(self, x):
x = x.view(-1, 28 * 28)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return xmodel = Net()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=learning_rate)for epoch in range(epochs):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
if batch_idx % 100 == 0:
print(f'Epoch: {epoch+1}/{epochs} [Batch: {batch_idx*len(data)}/{len(train_loader.dataset)}] Loss: {loss.item():.6f}')model.eval()
test_loss = 0
correct = 0with torch.no_grad():
for data, target in test_loader:
output = model(data)
test_loss += criterion(output, target).item()
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()test_loss /= len(test_loader.dataset)
accuracy = 100. * correct / len(test_loader.dataset)
print(f'Test set: Average loss: {test_loss:.4f}, Accuracy: {correct}/{len(test_loader.dataset)} ({accuracy:.2f}%)')
torch.save(model.state_dict(), "mnist_model.pth")```
## use mnist```python
model = Net()
### 3. Load the Trained Model Weights
model.load_state_dict(torch.load("mnist_model.pth"))
model.eval() # Set the model to evaluation mode### 4. Prepare the Handwritten Input Image
#You need to preprocess the handwritten image to match the format of the MNIST dataset (28x28 pixels, grayscale).
def preprocess_image(image_path):
transform = transforms.Compose([
transforms.Grayscale(), # Ensure the image is grayscale
transforms.Resize((28, 28)), # Resize to 28x28 pixels
transforms.ToTensor(), # Convert to tensor
transforms.Normalize((0.1307,), (0.3081,)) # Normalize with the same mean and std as MNIST
])
image = Image.open(image_path)
image = transform(image).unsqueeze(0) # Add batch dimension
return image### 5. Perform Inference
def recognize_digit(image_path):
image = preprocess_image(image_path)
with torch.no_grad():
output = model(image)
prediction = output.argmax(dim=1, keepdim=True)
return prediction.item()# Example usage
image_path = 'path_to_your_handwritten_digit_image3.png'
predicted_digit = recognize_digit(image_path)
print(f'Predicted Digit: {predicted_digit}')```
## calculator neural network
```python
import torch
import torch.nn as nn
import torch.optim as optim
import random
import numpy as np# Define the neural network architecture
class CalculatorNN(nn.Module):
def __init__(self):
super(CalculatorNN, self).__init__()
self.fc1 = nn.Linear(3, 128) # Input: 2 numbers + operation
self.fc2 = nn.Linear(128, 64)
self.fc3 = nn.Linear(64, 1) # Output: the resultdef forward(self, x):
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return xmodel = CalculatorNN()
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)# Training loop
num_epochs = 50000 # loss is too large if is 5000.
for epoch in range(num_epochs):
model.train()
# Forward pass
predictions = model(X_train)
loss = criterion(predictions, y_train)
# Backward pass and optimization
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (epoch + 1) % 10 == 0:
print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')# ---- use
model = CalculatorNN()
model.load_state_dict(torch.load('calculator_model.pth'))
model.eval()# Perform the prediction
with torch.no_grad():
# Prepare the input (32 * 3)
input_data = torch.tensor([[32.0, 3.0, 2]], dtype=torch.float32) # 2 corresponds to multiplication
prediction = model(input_data)
print(f'Prediction for 32 * 3: {prediction.item():.4f}')```
## Data cleaning
* [log clean utils](./log_utils.py)
```python
## split by pattern, a full log for instance
def split_log_file(input_file, split_pattern, output_pattern):
with open(input_file, 'r') as file:
log_content = file.read()
pattern = re.compile(split_pattern)
split_points = [match.start() for match in re.finditer(pattern, log_content)]
split_points.append(len(log_content))
for i in range(len(split_points) - 1):
start = split_points[i]
end = split_points[i + 1]
segment = log_content[start:end]
match = pattern.search(segment)
if match:
number = match.group(1)
output_file = output_pattern.format(number=number)
with open(output_file, 'w') as file:
file.write(segment)
print(f"Segment saved as {output_file}")## difference patterns save log
def move_patterns_logs(destination_path, patterns):
current_directory = os.getcwd()
log_files = glob.glob("*.log")
for log_file in log_files:
with open(log_file, 'r') as file:
if any(re.search(pattern, line) for pattern in patterns for line in file):
shutil.move(os.path.join(current_directory, log_file), destination_path)
break## filter show or data visualization
def filter_log_file(log_file_path, exclude_keywords):
with open(log_file_path, "r") as file:
lines = file.readlines()
filtered_lines = [line for line in lines if not any(keyword in line for keyword in exclude_keywords)]
for line in filtered_lines:
print(line, end="")```
## SVM
![](svm_visualization_3d.gif)
```python
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from sklearn.datasets import make_classification
from sklearn.svm import SVC
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
X, y = make_classification(n_samples=100, n_features=3, n_informative=3, n_redundant=0, n_classes=2, random_state=42)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
model = SVC(kernel='linear')
model.fit(X_train, y_train)
def plot_svm_decision_boundary_3d(model, X, y):
fig = plt.figure(figsize=(10, 8))
ax = fig.add_subplot(111, projection='3d')
# Plot the training points
scatter = ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=y, s=30, cmap=plt.cm.coolwarm)
# Create grid to evaluate model (this defines the 3D space)
xlim = ax.get_xlim()
ylim = ax.get_ylim()
zlim = ax.get_zlim()
xx = np.linspace(xlim[0], xlim[1], 20)
yy = np.linspace(ylim[0], ylim[1], 20)
zz = np.linspace(zlim[0], zlim[1], 20)
# Create a meshgrid to evaluate the decision function
YY, ZZ = np.meshgrid(yy, zz)
XX = -(model.coef_[0][0] * YY + model.coef_[0][2] * ZZ + model.intercept_) / model.coef_[0][1]
# Plot the decision surface
ax.plot_surface(XX, YY, ZZ, color='gray', alpha=0.3, rstride=100, cstride=100)
# Highlight support vectors
ax.scatter(model.support_vectors_[:, 0], model.support_vectors_[:, 1], model.support_vectors_[:, 2],
s=100, facecolors='none', edgecolors='k', linewidth=1.5, label='Support Vectors')
ax.set_title('SVM Decision Boundary in 3D')
ax.set_xlabel('Feature 1')
ax.set_ylabel('Feature 2')
ax.set_zlabel('Feature 3')
# Add color legend
legend1 = ax.legend(*scatter.legend_elements(), loc="best", title="Classes")
ax.add_artist(legend1)
plt.show()
plot_svm_decision_boundary_3d(model, X_train, y_train)
```## kmeans
* [kmeans log analysis](./kmeans_log_analysis.py)```python
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cluster import KMeansdef cluster_error_messages(error_messages, num_clusters=5):
vectorizer = TfidfVectorizer(stop_words='english')
X = vectorizer.fit_transform(error_messages)kmeans = KMeans(n_clusters=num_clusters, random_state=0)
kmeans.fit(X)labels = kmeans.labels_
clustered_errors = {}
for i, label in enumerate(labels):
if label not in clustered_errors:
clustered_errors[label] = []
clustered_errors[label].append(error_messages[i])
return clustered_errors
```
## Decision Tree Classifier```python
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier, plot_tree
from sklearn import metrics
iris = load_iris()
X = iris.data # Features
y = iris.target # Labels
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
clf = DecisionTreeClassifier()
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
accuracy = metrics.accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy * 100:.2f}%")
plt.figure(figsize=(12,8))
plot_tree(clf, feature_names=iris.feature_names, class_names=iris.target_names, filled=True)
plt.show()```
## Reinforcement Learning (DQN)
![](./rl_games/rl_gym_dqn_lunar.gif)
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import numpy as np
import random# Define a simple fully connected neural network
class DQN(nn.Module):
def __init__(self, input_dim, output_dim):
super(DQN, self).__init__()
self.fc1 = nn.Linear(input_dim, 128)
self.fc2 = nn.Linear(128, 128)
self.fc3 = nn.Linear(128, output_dim)def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
return self.fc3(x)# ### 3. **Initialize the environment and model:**
import gymnasium as gym
import torchenv = gym.make("LunarLander-v2", render_mode="human")
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.n# Create the DQN model
model = DQN(input_dim=state_dim, output_dim=action_dim)# ### 4. **Define the training loop:**
# In this section, we'll define how the agent interacts with the environment, how rewards are collected, and how the model is updated.# Parameters
learning_rate = 0.001
gamma = 0.99 # Discount factor
epsilon = 1.0 # Exploration rate
epsilon_decay = 0.995
epsilon_min = 0.01
episodes = 500# Optimizer
optimizer = optim.Adam(model.parameters(), lr=learning_rate)# Function to choose action (using epsilon-greedy policy)
def choose_action(state, epsilon):
if np.random.rand() <= epsilon:
return np.random.choice(action_dim) # Random action
state = torch.FloatTensor(state).unsqueeze(0)
with torch.no_grad():
q_values = model(state)
return torch.argmax(q_values).item()# Function to train the model
def train_model(memory, batch_size=64):
if len(memory) < batch_size:
return# Randomly sample a batch from memory
batch = random.sample(memory, batch_size)# Extract states, actions, rewards, next_states, and dones from the batch
states, actions, rewards, next_states, dones = zip(*batch)# Convert them to tensors
states = torch.FloatTensor(states)
actions = torch.LongTensor(actions)
rewards = torch.FloatTensor(rewards)
next_states = torch.FloatTensor(next_states)
dones = torch.FloatTensor(dones)# Compute Q values for the current states
q_values = model(states).gather(1, actions.unsqueeze(1)).squeeze(1)# Compute the maximum Q values for the next states
next_q_values = model(next_states).max(1)[0]# Compute the target Q values
q_targets = rewards + (1 - dones) * gamma * next_q_values# Compute the loss
loss = F.mse_loss(q_values, q_targets)# Optimize the model
optimizer.zero_grad()
loss.backward()
optimizer.step()# Main loop
memory = []for episode in range(episodes):
state = env.reset()[0]
total_reward = 0for t in range(1000):
action = choose_action(state, epsilon)
next_state, reward, done, truncated, _ = env.step(action)
memory.append((state, action, reward, next_state, done))train_model(memory)
state = next_state
total_reward += reward
if done or truncated:
breakepsilon = max(epsilon_min, epsilon * epsilon_decay)
print(f"Episode {episode + 1}, Total Reward: {total_reward}")env.close()
```## Flappy bird dqn
![](./rl_games/flappy_bird_app/flappy_bird_torch_dqn_nocnn.gif)
```python
import gymnasium as gym
import numpy as np
import pygame
from gymnasium import spaces
import torch
import torch.nn as nn
import torch.optim as optim
import random
from collections import deque
import timeimport pygame
import numpy as np
from gymnasium import spacesfrom flappy_bird_cl3_pass_env_to_nn_3 import FlappyBirdEnv
class DQN(nn.Module):
def __init__(self, input_size, n_actions):
super(DQN, self).__init__()
self.fc = nn.Sequential(
nn.Linear(input_size, 64),
nn.ReLU(),
nn.Linear(64, 64),
nn.ReLU(),
nn.Linear(64, n_actions)
)def forward(self, x):
return self.fc(x)class DQNAgent:
def __init__(self, env, learning_rate=1e-3, gamma=0.99, epsilon_start=1.0, epsilon_final=0.01, epsilon_decay=0.995):
self.env = env
self.n_actions = env.action_space.n
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")self.epsilon = epsilon_start
self.epsilon_final = epsilon_final
self.epsilon_decay = epsilon_decayself.memory = deque(maxlen=10000)
self.batch_size = 64state_size = len(env.get_state())
self.model = DQN(state_size, self.n_actions).to(self.device)
self.optimizer = optim.Adam(self.model.parameters(), lr=learning_rate)
self.criterion = nn.MSELoss()self.gamma = gamma
def get_action(self, state):
if random.random() < self.epsilon:
return random.randint(0, self.n_actions - 1)with torch.no_grad():
state = torch.FloatTensor(state).unsqueeze(0).to(self.device)
q_values = self.model(state)
return torch.argmax(q_values).item()def update_epsilon(self):
self.epsilon = max(self.epsilon_final, self.epsilon * self.epsilon_decay)def remember(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done))def train(self):
if len(self.memory) < self.batch_size:
returnbatch = random.sample(self.memory, self.batch_size)
states, actions, rewards, next_states, dones = zip(*batch)states = torch.FloatTensor(states).to(self.device)
actions = torch.LongTensor(actions).to(self.device)
rewards = torch.FloatTensor(rewards).to(self.device)
next_states = torch.FloatTensor(next_states).to(self.device)
dones = torch.FloatTensor(dones).to(self.device)current_q_values = self.model(states).gather(1, actions.unsqueeze(1))
with torch.no_grad():
next_q_values = self.model(next_states).max(1)[0]
target_q_values = rewards + (1 - dones) * self.gamma * next_q_valuesloss = self.criterion(current_q_values.squeeze(), target_q_values)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()def train_dqn(env, episodes=2000, max_steps=1000, render_interval=10):
agent = DQNAgent(env)
scores = []for episode in range(episodes):
state = env.reset()
score = 0for step in range(max_steps):
if episode % render_interval == 0:
env.render()action = agent.get_action(state)
next_state, reward, done, _, _ = env.step(action)
agent.remember(state, action, reward, next_state, done)
agent.train()state = next_state
score += rewardif done:
breakif episode % render_interval == 0:
pygame.event.pump()agent.update_epsilon()
scores.append(score)if episode % 10 == 0:
print(f"Episode: {episode}, Score: {score}, Epsilon: {agent.epsilon:.2f}")return agent, scores
if __name__ == "__main__":
env = FlappyBirdEnv()
agent, scores = train_dqn(env, episodes=6000, render_interval=50)# Test the trained agent
state = env.reset()
done = False
score = 0while not done:
env.render()
action = agent.get_action(state)
next_state, reward, done, _, _ = env.step(action)
state = next_state
score += rewardfor event in pygame.event.get():
if event.type == pygame.QUIT:
done = Truepygame.event.pump()
time.sleep(0.03)print(f"Final Score: {score}")
env.close()
```## SGD
![](./deep_learning_basic_funcs/sgd_visualization_animation.gif)```python
import torch
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.animation import FuncAnimation# Random 3D surface (loss function)
def loss_function(x, y):
return torch.sin(x) * torch.cos(y) + 0.1 * (x**2 + y**2)# Generate a meshgrid for plotting the surface
x = torch.linspace(-5, 5, 100)
y = torch.linspace(-5, 5, 100)
X, Y = torch.meshgrid(x, y)
Z = loss_function(X, Y).detach().numpy()# Initialize figure and 3D axis for animation
fig = plt.figure(figsize=(10, 7))
ax = fig.add_subplot(111, projection='3d')
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
ax.set_title('SGD Optimization Path on 3D Surface')# Plot the static 3D surface
ax.plot_surface(X.numpy(), Y.numpy(), Z, cmap='viridis', alpha=0.7)# SGD starting point
start_point = torch.tensor([4.0, 4.0], requires_grad=True)# Hyperparameters
learning_rate = 0.1
optimizer = torch.optim.SGD([start_point], lr=learning_rate)# Number of steps and animation frames
steps = 10
path = np.zeros((steps, 3))# Plotting the initial point on the surface
point_plot, = ax.plot([], [], [], color='r', marker='o', markersize=5)# Function to update the frame during animation
def update(i):
global start_pointoptimizer.zero_grad()
# Calculate the loss (z value)
loss = loss_function(start_point[0], start_point[1])# Backpropagation to compute gradients
loss.backward()# Perform optimization step
optimizer.step()# Store the (x, y, z) values
path[i, 0] = start_point[0].item()
path[i, 1] = start_point[1].item()
path[i, 2] = loss.item()# Update point on the surface
point_plot.set_data(path[:i+1, 0], path[:i+1, 1])
point_plot.set_3d_properties(path[:i+1, 2])
return point_plot,# Animate SGD for 10 steps
ani = FuncAnimation(fig, update, frames=steps, interval=500, blit=True)# Show the animation
plt.show()```
## CNN with Attention
```python
import torch.nn as nn
import torch.nn.functional as Fclass Attention(nn.Module):
def __init__(self, in_channels, out_channels):
super(Attention, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)
self.softmax = nn.Softmax(dim=-1)def forward(self, x):
# Global feature extraction
global_features = torch.mean(x, dim=(2, 3), keepdim=True)
attention_map = self.conv(global_features)
attention_map = self.softmax(attention_map)
out = x * attention_map
return outclass CNNWithAttention(nn.Module):
def __init__(self):
super(CNNWithAttention, self).__init__()
# Convolutional layers
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
self.pool = nn.MaxPool2d(2, 2)# Attention layer
self.attention = Attention(64, 64)# Fully connected layers
self.fc1 = nn.Linear(64 * 8 * 8, 512)
self.fc2 = nn.Linear(512, 10)def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))# Attention mechanism
x = self.attention(x)x = x.view(-1, 64 * 8 * 8)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x# --
# Initialize the model, loss function, and optimizer
model = CNNWithAttention()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)# Training loop
for epoch in range(5): # Train for 5 epochs
running_loss = 0.0
for inputs, labels in trainloader:
# Zero the parameter gradients
optimizer.zero_grad()# Forward pass
outputs = model(inputs)
loss = criterion(outputs, labels)# Backward pass and optimize
loss.backward()
optimizer.step()running_loss += loss.item()
print(f"Epoch [{epoch + 1}/5], Loss: {running_loss / len(trainloader)}")
```
## LSTM generator
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoaderclass Vocab:
def __init__(self, stoi, itos):
self.stoi = stoi
self.itos = itos# Provided corpus (AI history)
corpus = """
The history of artificial intelligence (AI) began in antiquity, with myths, stories and rumors of artificial beings endowed with intelligence or consciousness by master craftsmen.
... ...
"""# Simple tokenization (splitting by spaces)
corpus = corpus.replace("\n", " ") # Remove newlines# Tokenization can be improved using libraries like nltk or spacy, but we'll use a simple split here
tokens = corpus.split()# You can build a vocabulary from this corpus as you did before, for instance:
from collections import Counter# Create a vocabulary from the corpus
token_counts = Counter(tokens)
vocab_stoi = {token: idx for idx, (token, count) in enumerate(token_counts.items())}
vocab_itos = {idx: token for token, idx in vocab_stoi.items()}# Create the Vocab object
vocab = Vocab(stoi=vocab_stoi, itos=vocab_itos)class RNNModel(nn.Module):
def __init__(self, vocab_size, embed_size, hidden_size, num_layers):
super(RNNModel, self).__init__()
self.num_layers = num_layers
self.hidden_size = hidden_size
self.embedding = nn.Embedding(vocab_size, embed_size)
self.rnn = nn.LSTM(embed_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, vocab_size)def forward(self, x, hidden):
x = self.embedding(x)
out, hidden = self.rnn(x, hidden)
out = self.fc(out)
return out, hiddendef init_hidden(self, batch_size):
# Initialize hidden states (h_0) and cell states (c_0) with correct batch size
weight = next(self.parameters()).data
return (weight.new_zeros(self.num_layers, batch_size, self.hidden_size),
weight.new_zeros(self.num_layers, batch_size, self.hidden_size))class TextDataset(Dataset):
def __init__(self, text, vocab, sequence_length):
self.vocab = vocab
self.sequence_length = sequence_length
self.data = self.tokenize_and_encode(text)
def tokenize_and_encode(self, text):
tokens = text.split() # Simple tokenization (split by spaces)
return [self.vocab.stoi[token] for token in tokens if token in self.vocab.stoi]
def __len__(self):
return len(self.data) - self.sequence_length
def __getitem__(self, idx):
x = self.data[idx:idx + self.sequence_length]
y = self.data[idx + 1:idx + 1 + self.sequence_length]
return torch.tensor(x, dtype=torch.long), torch.tensor(y, dtype=torch.long)# Define sequence length and batch size
sequence_length = 10 # Can be tuned
batch_size = 100# Create the dataset and dataloader
dataset = TextDataset(corpus, vocab, sequence_length)
train_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True)# Now you're ready to train the model using the provided corpus
# Define model, loss function, and optimizer
vocab_size = len(vocab.stoi)
embed_size = 50 # Adjust as needed
hidden_size = 100 # Adjust as needed
num_layers = 2
num_epochs = 100 # Adjust based on performance
learning_rate = 0.001model = RNNModel(vocab_size, embed_size, hidden_size, num_layers)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)# Training loop
for epoch in range(num_epochs):
for batch in train_loader:
inputs, targets = batch
batch_size = inputs.size(0) # Get the actual batch size for this iteration
hidden = model.init_hidden(batch_size) # Initialize hidden state with correct batch sizeoutputs, hidden = model(inputs, hidden)
loss = criterion(outputs.view(-1, vocab_size), targets.view(-1))optimizer.zero_grad()
loss.backward()
optimizer.step()print(f'Epoch {epoch+1}, Loss: {loss.item()}')
torch.save(model.state_dict(), 'rnn_model_ai.pth')
def generate_text(model, start_text, max_length=100):
model.eval()
hidden = model.init_hidden(1) # Start with batch size 1
input = torch.tensor([[vocab.stoi[start_text]]]) # Convert start_text to input tensor
result = [start_text]
for _ in range(max_length):
output, hidden = model(input, hidden)
prob = nn.functional.softmax(output[0, -1], dim=0).data
next_word = torch.multinomial(prob, 1).item()
result.append(vocab.itos[next_word]) # Convert back to word using vocab
input = torch.tensor([[next_word]]) # Feed the next word as input
return ' '.join(result)
start_text = 'AI' # The starting word
generated_text = generate_text(model, start_text, max_length=100)
print(generated_text)```
## Seq2seq number translator
```python
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import random
import matplotlib.pyplot as pltimport random
class NumeralTranslationDataset:
def __init__(self):
# Comprehensive mapping of Arabic numerals to English words
self.num_to_words = {
'0': 'zero', '1': 'one', '2': 'two', '3': 'three', '4': 'four',
'5': 'five', '6': 'six', '7': 'seven', '8': 'eight', '9': 'nine',
'10': 'ten', '11': 'eleven', '12': 'twelve', '13': 'thirteen',
'14': 'fourteen', '15': 'fifteen', '16': 'sixteen',
'17': 'seventeen', '18': 'eighteen', '19': 'nineteen',
'20': 'twenty', '21': 'twenty one', '22': 'twenty two',
'23': 'twenty three', '24': 'twenty four', '25': 'twenty five',
'30': 'thirty', '31': 'thirty one', '32': 'thirty two',
'33': 'thirty three', '34': 'thirty four', '35': 'thirty five',
'40': 'forty', '41': 'forty one', '42': 'forty two',
'43': 'forty three', '44': 'forty four', '45': 'forty five',
'50': 'fifty', '51': 'fifty one', '52': 'fifty two',
'53': 'fifty three', '54': 'fifty four', '55': 'fifty five',
'60': 'sixty', '61': 'sixty one', '62': 'sixty two',
'63': 'sixty three', '64': 'sixty four', '65': 'sixty five',
'70': 'seventy', '71': 'seventy one', '72': 'seventy two',
'73': 'seventy three', '74': 'seventy four', '75': 'seventy five',
'80': 'eighty', '81': 'eighty one', '82': 'eighty two',
'83': 'eighty three', '84': 'eighty four', '85': 'eighty five',
'90': 'ninety', '91': 'ninety one', '92': 'ninety two',
'93': 'ninety three', '94': 'ninety four', '95': 'ninety five'
}def generate_training_data(self, num_examples=1000):
"""Generate random training data for number translation."""
input_sequences = []
target_sequences = []# Generate random numbers from 0 to 99 for a total of `num_examples` examples
for _ in range(num_examples):
num = random.randint(0, 99) # Randomly pick a number from 0 to 99
num_str = str(num)
# Translate to words
if num in self.num_to_words:
word = self.num_to_words[num_str]
elif num < 20:
# Handle teens
units = str(num % 10)
word = self.num_to_words[units]
else:
# Handle 21-99
tens = str((num // 10) * 10)
units = str(num % 10)
tens_word = self.num_to_words[tens]
units_word = self.num_to_words[units] if units != '0' else ''
word = f"{tens_word} {units_word}".strip()
input_sequences.append(list(num_str))
target_sequences.append(list(word))return input_sequences, target_sequences
class Encoder(nn.Module):
def __init__(self, input_size, embedding_dim, hidden_dim):
super(Encoder, self).__init__()
self.embedding = nn.Embedding(input_size, embedding_dim)
self.gru = nn.GRU(embedding_dim, hidden_dim, batch_first=True, num_layers=2, dropout=0.2)
def forward(self, x):
embedded = self.embedding(x)
outputs, hidden = self.gru(embedded)
return outputs, hiddenclass Attention(nn.Module):
def __init__(self, hidden_dim):
super(Attention, self).__init__()
self.attn = nn.Linear(hidden_dim * 2, hidden_dim)
self.v = nn.Parameter(torch.rand(hidden_dim))
def forward(self, hidden, encoder_outputs):
# hidden = [batch size, hidden dim]
# encoder_outputs = [batch size, seq len, hidden dim]
batch_size = encoder_outputs.shape[0]
src_len = encoder_outputs.shape[1]
# Repeat hidden state src_len times
hidden = hidden.unsqueeze(1).repeat(1, src_len, 1)
# Concatenate hidden state with encoder outputs
energy = torch.tanh(self.attn(torch.cat((hidden, encoder_outputs), dim=-1)))
# Compute attention scores
attention = torch.sum(self.v * energy, dim=-1)
return torch.softmax(attention, dim=1)class Decoder(nn.Module):
def __init__(self, output_size, embedding_dim, hidden_dim):
super(Decoder, self).__init__()
self.embedding = nn.Embedding(output_size, embedding_dim)
self.attention = Attention(hidden_dim)
self.gru = nn.GRU(embedding_dim + hidden_dim, hidden_dim, batch_first=True, num_layers=2, dropout=0.2)
self.fc_out = nn.Linear(hidden_dim, output_size)
def forward(self, input, hidden, encoder_outputs):
# input = [batch size, 1]
# hidden = [batch size, hidden dim]
# encoder_outputs = [batch size, src len, hidden dim]
# Embedding input
embedded = self.embedding(input)
# Compute attention weights
a = self.attention(hidden[-1], encoder_outputs)
# Apply attention to encoder outputs
attended = torch.bmm(a.unsqueeze(1), encoder_outputs).squeeze(1)
# Concatenate embedded input with attended context
rnn_input = torch.cat((embedded.squeeze(1), attended), dim=1).unsqueeze(1)
# GRU step
output, hidden = self.gru(rnn_input, hidden)
# Prediction
prediction = self.fc_out(output.squeeze(1))
return prediction, hidden, aclass Seq2SeqTranslator(nn.Module):
def __init__(self, input_size, output_size, embedding_dim, hidden_dim):
super(Seq2SeqTranslator, self).__init__()
self.encoder = Encoder(input_size, embedding_dim, hidden_dim)
self.decoder = Decoder(output_size, embedding_dim, hidden_dim)
def forward(self, input_seq, target_seq, teacher_forcing_ratio=0.5):
batch_size = input_seq.size(0)
target_len = target_seq.size(1)
target_vocab_size = self.decoder.fc_out.out_features
# Tensor to store decoder outputs
outputs = torch.zeros(batch_size, target_len, target_vocab_size)
# Encoder
encoder_outputs, hidden = self.encoder(input_seq)
# First decoder input
decoder_input = torch.zeros(batch_size, 1, dtype=torch.long)
# Decode
for t in range(target_len):
decoder_output, hidden, _ = self.decoder(decoder_input, hidden, encoder_outputs)
outputs[:, t:t+1, :] = decoder_output.unsqueeze(1)
# Teacher forcing
teacher_force = random.random() < teacher_forcing_ratio
top1 = decoder_output.argmax(1)
if teacher_force:
decoder_input = target_seq[:, t:t+1]
else:
decoder_input = top1.unsqueeze(1)
return outputsclass NumeralTranslator:
def __init__(self, input_chars, output_chars):
# Create dataset
self.dataset = NumeralTranslationDataset()
# Create character to index mappings
self.input_char_to_idx = {char: i for i, char in enumerate(input_chars)}
self.input_idx_to_char = {i: char for char, i in self.input_char_to_idx.items()}
self.output_char_to_idx = {char: i for i, char in enumerate(output_chars)}
self.output_idx_to_char = {i: char for char, i in self.output_char_to_idx.items()}
# Hyperparameters
self.embedding_dim = 128
self.hidden_dim = 256
# Initialize model
self.model = Seq2SeqTranslator(
input_size=len(input_chars),
output_size=len(output_chars),
embedding_dim=self.embedding_dim,
hidden_dim=self.hidden_dim
)
self.criterion = nn.CrossEntropyLoss()
self.optimizer = optim.Adam(self.model.parameters(), lr=0.001)
def prepare_sequence(self, seq, char_to_idx):
"""Convert sequence of characters to tensor of indices."""
return torch.tensor([char_to_idx.get(char, 0) for char in seq], dtype=torch.long)
def pad_sequences(self, sequences, pad_token):
"""Pad sequences to equal length."""
# Convert sequences to lists if they are tensors
sequences = [seq.tolist() if torch.is_tensor(seq) else seq for seq in sequences]
max_len = max(len(seq) for seq in sequences)
padded = []
for seq in sequences:
padded.append(seq + [pad_token] * (max_len - len(seq)))
return torch.tensor(padded, dtype=torch.long)
def train(self, epochs=300, batch_size=32):
"""Train the translation model."""
# Generate training data
input_sequences, target_sequences = self.dataset.generate_training_data()
# Prepare input and target sequences
input_chars = [list(str(seq)) for seq in input_sequences]
target_chars = [list(seq) for seq in target_sequences]
# Get character sets for input and output
input_chars_set = sorted(set(''.join([''.join(seq) for seq in input_chars])))
output_chars_set = sorted(set(''.join([''.join(seq) for seq in target_chars])))
print("Input characters:", input_chars_set)
print("Output characters:", output_chars_set)
# Training loop
epoch_losses = []
for epoch in range(epochs):
total_loss = 0
# Shuffle data
combined = list(zip(input_chars, target_chars))
random.shuffle(combined)
input_chars, target_chars = zip(*combined)
for i in range(0, len(input_chars), batch_size):
batch_input = input_chars[i:i+batch_size]
batch_target = target_chars[i:i+batch_size]
# Prepare input sequences
input_seqs = self.pad_sequences(
[self.prepare_sequence(seq, self.input_char_to_idx) for seq in batch_input],
pad_token=0
)
# Prepare target sequences
target_seqs = self.pad_sequences(
[self.prepare_sequence(seq, self.output_char_to_idx) for seq in batch_target],
pad_token=0
)
# Zero gradients
self.optimizer.zero_grad()
# Forward pass
outputs = self.model(input_seqs, target_seqs)
# Compute loss
loss = self.criterion(
outputs.view(-1, outputs.size(-1)),
target_seqs.view(-1)
)
# Backward pass
loss.backward()
self.optimizer.step()
total_loss += loss.item()
# Record average epoch loss
avg_loss = total_loss / (len(input_chars) // batch_size)
epoch_losses.append(avg_loss)
# Print progress
if epoch % 10 == 0:
print(f'Epoch {epoch}, Loss: {avg_loss:.4f}')
# Visualize training loss
self.plot_training_loss(epoch_losses)
return epoch_losses
def translate(self, input_number):
"""Translate a single number to words."""
# Prepare input sequence
input_seq = self.prepare_sequence(list(str(input_number)), self.input_char_to_idx)
input_seq = input_seq.unsqueeze(0) # Add batch dimension
# Create dummy target sequence of zeros
max_output_length = 10 # Maximum expected word length
dummy_target = torch.zeros(1, max_output_length, dtype=torch.long)
# Disable gradient computation
with torch.no_grad():
# Get model outputs
outputs = self.model(input_seq, dummy_target)
# Get the most likely output characters
predicted_indices = outputs.argmax(dim=-1)
# Convert indices back to characters
predicted_chars = []
for i in range(predicted_indices.size(1)):
char_idx = predicted_indices[0, i].item()
char = self.output_idx_to_char[char_idx]
if char != '': # Skip padding
predicted_chars.append(char)
# Join characters to form a word
return ''.join(predicted_chars).strip()
def save_model(self, filepath='numeral_translator.pth'):
"""Save model state."""
torch.save({
'model_state_dict': self.model.state_dict(),
'input_char_to_idx': self.input_char_to_idx,
'output_char_to_idx': self.output_char_to_idx
}, filepath)
print(f"Model saved to {filepath}")
def load_model(self, filepath='numeral_translator.pth'):
"""Load model state."""
checkpoint = torch.load(filepath)
self.model.load_state_dict(checkpoint['model_state_dict'])
self.input_char_to_idx = checkpoint['input_char_to_idx']
self.output_char_to_idx = checkpoint['output_char_to_idx']
print(f"Model loaded from {filepath}")
def plot_training_loss(self, losses):
"""Visualize training loss."""
plt.figure(figsize=(10, 5))
plt.plot(losses, label='Training Loss')
plt.title('Training Loss Over Epochs')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
plt.tight_layout()
plt.savefig('training_loss.png')
plt.close()def main():
# Define input and output character sets
input_chars = list('0123456789')
output_chars = list(' abcdefghijklmnopqrstuvwxyz') + ['']# Initialize translator
translator = NumeralTranslator(input_chars, output_chars)# Train the model
print("Training model...")
losses = translator.train(epochs=300, batch_size=32)# Save the trained model
translator.save_model()# Test the model with some examples
test_numbers = ['0', '5', '13', '25', '42', '67', '89', '99']
print("\nTesting translations:")
for number in test_numbers:
translation = translator.translate(number)
print(f"{number} -> {translation}")# Interactive mode
print("\nEnter a number (0-99) to translate or 'q' to quit:")
while True:
user_input = input("> ")
if user_input.lower() == 'q':
break
try:
number = int(user_input)
if 0 <= number <= 99:
translation = translator.translate(user_input)
print(f"Translation: {translation}")
else:
print("Please enter a number between 0 and 99")
except ValueError:
print("Invalid input. Please enter a valid number or 'q' to quit")if __name__ == "__main__":
main()
```## Transformer generator
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
import math
class Vocab:
def __init__(self, stoi, itos):
self.stoi = stoi
self.itos = itoscorpus = """
The history of artificial intelligence (AI) began in antiquity, with myths, stories and rumors of artificial beings endowed with intelligence or consciousness by master craftsmen.
...
"""
corpus = corpus.replace("\n", " ")
tokens = corpus.split()
from collections import Counter
token_counts = Counter(tokens)
vocab_stoi = {token: idx for idx, (token, count) in enumerate(token_counts.items())}
vocab_itos = {idx: token for token, idx in vocab_stoi.items()}
vocab = Vocab(stoi=vocab_stoi, itos=vocab_itos)class PositionalEncoding(nn.Module):
def __init__(self, embed_size, max_len=5000):
super(PositionalEncoding, self).__init__()
self.encoding = torch.zeros(max_len, embed_size)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, embed_size, 2).float() * (-math.log(10000.0) / embed_size))
self.encoding[:, 0::2] = torch.sin(position * div_term)
self.encoding[:, 1::2] = torch.cos(position * div_term)
self.encoding = self.encoding.unsqueeze(0)
def forward(self, x):
return x + self.encoding[:, :x.size(1), :].to(x.device)class TransformerModel(nn.Module):
def __init__(self, vocab_size, embed_size, num_heads, hidden_size, num_layers, dropout=0.1):
super(TransformerModel, self).__init__()
self.embedding = nn.Embedding(vocab_size, embed_size)
self.pos_encoder = PositionalEncoding(embed_size)
encoder_layers = nn.TransformerEncoderLayer(embed_size, num_heads, hidden_size, dropout)
self.transformer = nn.TransformerEncoder(encoder_layers, num_layers)
self.fc = nn.Linear(embed_size, vocab_size)
def forward(self, src, src_mask=None):
src = self.embedding(src) * math.sqrt(src.size(-1)) # scale by sqrt(embed_size)
src = self.pos_encoder(src)
output = self.transformer(src, src_mask)
output = self.fc(output)
return outputclass TextDataset(Dataset):
def __init__(self, text, vocab, sequence_length):
self.vocab = vocab
self.sequence_length = sequence_length
self.data = self.tokenize_and_encode(text)
def tokenize_and_encode(self, text):
tokens = text.split()
return [self.vocab.stoi[token] for token in tokens if token in self.vocab.stoi]
def __len__(self):
return len(self.data) - self.sequence_length
def __getitem__(self, idx):
x = self.data[idx:idx + self.sequence_length]
y = self.data[idx + 1:idx + 1 + self.sequence_length]
return torch.tensor(x, dtype=torch.long), torch.tensor(y, dtype=torch.long)sequence_length = 10
batch_size = 100
dataset = TextDataset(corpus, vocab, sequence_length)
train_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
vocab_size = len(vocab.stoi)
embed_size = 50 # Can be tuned
num_heads = 2 # Number of attention heads
hidden_size = 100 # Hidden layer size in feedforward network
num_layers = 88 # Number of Transformer layers
dropout = 0.1
num_epochs = 100 # Adjust based on performance
learning_rate = 0.001
model = TransformerModel(vocab_size, embed_size, num_heads, hidden_size, num_layers, dropout)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)for epoch in range(num_epochs):
for batch in train_loader:
inputs, targets = batch
inputs = inputs.permute(1, 0) # (batch_size, sequence_length) -> (sequence_length, batch_size)
targets = targets.permute(1, 0)
outputs = model(inputs)# Instead of view(), use reshape()
loss = criterion(outputs.reshape(-1, vocab_size), targets.reshape(-1))
optimizer.zero_grad()
loss.backward()
optimizer.step()
print(f'Epoch {epoch+1}, Loss: {loss.item()}')torch.save(model.state_dict(), 'transformer_model_ai.pth')
def generate_text(model, start_text, max_length=100):
model.eval()
input = torch.tensor([[vocab.stoi[start_text]]]).permute(1, 0) # Convert start_text to input tensor
result = [start_text]
for _ in range(max_length):
output = model(input)
prob = nn.functional.softmax(output[-1, 0], dim=0).data
next_word = torch.multinomial(prob, 1).item()
result.append(vocab.itos[next_word])
input = torch.cat([input, torch.tensor([[next_word]])], dim=0)
return ' '.join(result)
start_text = 'AI'
generated_text = generate_text(model, start_text, max_length=100)
print(generated_text)```