Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/xoolive/cartes

Create great maps in Python 🐍 with openstreetmap 🌍
https://github.com/xoolive/cartes

altair cartopy geopandas geospatial gis maps openstreetmap

Last synced: 5 days ago
JSON representation

Create great maps in Python 🐍 with openstreetmap 🌍

Awesome Lists containing this project

README

        

# Cartes

![tests](https://github.com/xoolive/cartes/workflows/tests/badge.svg)
![docs](https://github.com/xoolive/cartes/workflows/docs/badge.svg)
![Code Coverage](https://img.shields.io/codecov/c/github/xoolive/cartes.svg)
![Checked with mypy](https://img.shields.io/badge/mypy-checked-blue.svg)
![Code style: black](https://img.shields.io/badge/code%20style-black-black.svg)
![License](https://img.shields.io/pypi/l/cartes.svg)\
![PyPI version](https://img.shields.io/pypi/v/cartes)
![PyPI downloads](https://img.shields.io/pypi/dm/cartes)
![Conda version](https://img.shields.io/conda/vn/conda-forge/cartes)
![Conda Downloads](https://img.shields.io/conda/dn/conda-forge/cartes.svg)

Cartes is a Python library providing facilities to produce meaningful maps.

Cartes builds on top of most common Python visualisation libraries (Matplotlib/Cartopy, Altair, ipyleaflet) and data manipulation libraries (Pandas, Geopandas) and provides mostly:

- a **comprehensive set of geographic projections**, built on top of Cartopy and Altair/d3.js;
- an **interface to OpenstreetMap Nominatim and Overpass API**. Result of requests are parsed in a convenient format for preprocessing and storing in standard formats;
- beautiful **default parameters** for quality visualisations;
- **advanced caching facilities**. Do not download twice the same content in the same day.

The cartes library is a powerful asset to **publish clean, lightweight geographical datasets**; and to **produce decent geographical visualisations** in few lines of code.

## Gallery




More in the [documentation](https://cartes-viz.github.io/gallery.html)

## Installation

Latest release:

Recommended for beginners, with conda:

```sh
conda install -c conda-forge cartes
```

or with pip:

```sh
pip install cartes
```

Development version, with uv:

```sh
git clone https://github.com/xoolive/cartes
cd cartes
uv sync --dev
```

## Documentation

![docs](https://github.com/xoolive/cartes/workflows/docs/badge.svg)

Documentation available at https://cartes-viz.github.io/