https://github.com/xotic750/modulo-x
modulo - floored division implementation.
https://github.com/xotic750/modulo-x
floored-division javascript math modulo
Last synced: about 2 months ago
JSON representation
modulo - floored division implementation.
- Host: GitHub
- URL: https://github.com/xotic750/modulo-x
- Owner: Xotic750
- License: mit
- Created: 2017-06-14T09:27:22.000Z (over 8 years ago)
- Default Branch: master
- Last Pushed: 2023-01-04T21:54:39.000Z (about 3 years ago)
- Last Synced: 2025-02-18T18:23:05.399Z (12 months ago)
- Topics: floored-division, javascript, math, modulo
- Language: JavaScript
- Homepage:
- Size: 2.1 MB
- Stars: 0
- Watchers: 2
- Forks: 0
- Open Issues: 21
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
## modulo-x
modulo - floored division implementation.
### `module.exports(dividend, divisor)` ⇒ number ⏏
The notation “x modulo y” (y must be finite and nonzero) computes a value k
of the same sign as y (or zero) such that abs(k) < abs(y) and x-k = q × y
for some integer q.
Donald Knuth described floored division where the quotient is defined by
the floor function q = ⌊a/n⌋ and thus according to equation the remainder
would have the same sign as the divisor. Due to the floor function, the
quotient is always rounded downwards, even if it is already negative.
**Kind**: Exported function
**Returns**: number - The integer remainder.
**See**
- [http://www.ecma-international.org/ecma-262/6.0/#sec-algorithm-conventions](http://www.ecma-international.org/ecma-262/6.0/#sec-algorithm-conventions)
- [https://en.wikipedia.org/wiki/Modulo_operation](https://en.wikipedia.org/wiki/Modulo_operation)
| Param | Type | Description |
| -------- | ------------------- | ------------------------------------- |
| dividend | number | The integer to find the remainder of. |
| divisor | number | The integer to divide by. |
**Example**
```js
import modulo from 'modulo-x';
console.log(modulo(1, 0x1000000)); // 1
console.log(modulo(-1, 0x1000000)); // 16777215 (2^24-1)
```