Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/xovee/casflow
TKDE 2021. CasFlow: Exploring Hierarchical Structures and Propagation Uncertainty for Cascade Prediction.
https://github.com/xovee/casflow
aps graph information-cascades information-diffusion popularity-prediction twitter weibo
Last synced: 3 months ago
JSON representation
TKDE 2021. CasFlow: Exploring Hierarchical Structures and Propagation Uncertainty for Cascade Prediction.
- Host: GitHub
- URL: https://github.com/xovee/casflow
- Owner: Xovee
- License: mit
- Created: 2020-05-03T03:04:15.000Z (over 4 years ago)
- Default Branch: master
- Last Pushed: 2024-07-29T16:02:53.000Z (6 months ago)
- Last Synced: 2024-07-29T20:51:59.138Z (6 months ago)
- Topics: aps, graph, information-cascades, information-diffusion, popularity-prediction, twitter, weibo
- Language: Python
- Homepage: https://www.xoveexu.com
- Size: 121 KB
- Stars: 28
- Watchers: 3
- Forks: 9
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# CasFlow
![](https://img.shields.io/badge/TKDE-2021-blue)
![](https://img.shields.io/badge/python-3.9.7-green)
![](https://img.shields.io/badge/tensorflow-2.9.1-green)
![](https://img.shields.io/badge/cudatoolkit-11.2.2-green)
![](https://img.shields.io/badge/cudnn-8.1.0-green)
This repo provides a reference implementation of **CasFlow** as described in the paper:
> [CasFlow: Exploring Hierarchical Structures and Propagation Uncertainty for Cascade Prediction](https://doi.org/10.1109/TKDE.2021.3126475)
> [Xovee Xu](https://www.xoveexu.com), [Fan Zhou](https://dblp.org/pid/63/3122-2.html), [Kunpeng Zhang](http://www.terpconnect.umd.edu/~kpzhang/), [Siyuan Liu](https://scholar.google.com/citations?user=Uhvt7OIAAAAJ&hl=en), and [Goce Trajcevski](https://dblp.org/pid/66/974.html)
> IEEE Transactions on Knowledge and Data Engineering (TKDE), 2021## Basic Usage
### Requirements
The code was tested with `python 3.9.7`, `tensorflow 2.9.1`, `cudatoolkit 11.2`, and `cudnn 8.1.0`. Install the dependencies via [Anaconda](https://www.anaconda.com/):
```shell
# create virtual environment
conda create --name casflow python=3.9# activate environment
conda activate casflow# install tensorflow and other requirements
conda install -c conda-forge cudatoolkit=11.2 cudnn=8.1.0
pip install -r requirements.txt
```A note from 2024: fu*k tensorflow
If you fail to initialize the GPU
It could be your environment incorrectly loads the system-wide installation of CUDA instead of the version CUDA 11.2. You can follow this to use the 11.2 version temporarily. First, open a new shell window. Then, run the following codes:
```shell
unset CUDA_HOME
unset LD_LIBRARY_PATHexport PATH=$CONDA_PREFIX/lib:$PATH
export LD_LIBRARY_PATH=$CONDA_PREFIX/lib:$LD_LIBRARY_PATH
```Then you can try using the GPU:
```python
import tensorflow as tf
print(tf.config.list_physical_devices('GPU'))
```
### Run the code
```shell
cd ./casflow# generate information cascades
python gene_cas.py --input=./dataset/sample/# generate cascade graph and global graph embeddings
python gene_emb.py --input=./dataset/sample/# run CasFlow model
python casflow.py --input=./dataset/sample/
```
More running options are described in the codes, e.g.,- Using the Weibo dataset: `--input=./dataset/weibo/`
- Change observation time: `--observation_time=3600`## Datasets
See some sample cascades in `./dataset/sample/`.
Datasets download link: [Google Drive](https://drive.google.com/file/d/1o4KAZs19fl4Qa5LUtdnmNy57gHa15AF-/view?usp=sharing) or [Baidu Drive (password: `1msd`)](https://pan.baidu.com/s/1tWcEefxoRHj002F0s9BCTQ).
The datasets we used in the paper are come from:
- [Twitter](http://carl.cs.indiana.edu/data/#virality2013) (Weng *et al.*, [Virality Prediction and Community Structure in Social Network](https://www.nature.com/articles/srep02522), Scientific Report, 2013).
- [Weibo](https://github.com/CaoQi92/DeepHawkes) (Cao *et al.*, [DeepHawkes: Bridging the Gap between
Prediction and Understanding of Information Cascades](https://dl.acm.org/doi/10.1145/3132847.3132973), CIKM, 2017). You can also download Weibo dataset [here](https://drive.google.com/file/d/1fgkLeFRYQDQOKPujsmn61sGbJt6PaERF/view?usp=sharing) in Google Drive.
- [APS](https://journals.aps.org/datasets) (Released by *American Physical Society*, obtained at Jan 17, 2019).## Cite
If you find **CasFlow** useful for your research, please consider citing us 😘:
@article{xu2021casflow,
author = {Xovee Xu and Fan Zhou and Kunpeng Zhang and Siyuan Liu and Goce Trajcevski},
title = {Cas{F}low: Exploring Hierarchical Structures and Propagation Uncertainty for Cascade Prediction},
journal = {IEEE Transactions on Knowledge and Data Engineering (TKDE)},
year = {2021},
volume = {35},
number = {4},
pages={3484-3499},
doi = {10.1109/TKDE.2021.3126475},
}
This paper is an extension of [VaCas](https://doi.org/10.1109/INFOCOM41043.2020.9155349):@inproceedings{zhou2020variational,
author = {Fan Zhou and Xovee Xu and Kunpeng Zhang and Goce Trajcevski and Ting Zhong},
title = {Variational Information Diffusion for Probabilistic Cascades Prediction},
booktitle = {IEEE International Conference on Computer Communications (INFOCOM)},
year = {2020},
pages = {1618--1627},
doi = {10.1109/INFOCOM41043.2020.9155359},
}
We also have a [survey paper](https://dl.acm.org/doi/10.1145/3433000) you might be interested:
@article{zhou2021survey,
author = {Fan Zhou and Xovee Xu and Goce Trajcevski and Kunpeng Zhang},
title = {A Survey of Information Cascade Analysis: Models, Predictions, and Recent Advances},
journal = {ACM Computing Surveys},
volume = {54},
number = {2},
year = {2021},
articleno = {27},
numpages = {36},
doi = {10.1145/3433000},
}## Contact
For any questions please open an issue or drop an email to: `xovee at live.com`