Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/xptree/NetMF
Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec
https://github.com/xptree/NetMF
deepwalk matrix-factorization network-embedding node2vec social-network social-network-analysis
Last synced: 2 months ago
JSON representation
Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec
- Host: GitHub
- URL: https://github.com/xptree/NetMF
- Owner: xptree
- License: mit
- Created: 2017-11-27T05:40:39.000Z (about 7 years ago)
- Default Branch: master
- Last Pushed: 2020-01-27T13:08:39.000Z (almost 5 years ago)
- Last Synced: 2024-08-03T15:17:51.461Z (5 months ago)
- Topics: deepwalk, matrix-factorization, network-embedding, node2vec, social-network, social-network-analysis
- Language: Python
- Homepage:
- Size: 1.16 MB
- Stars: 186
- Watchers: 9
- Forks: 47
- Open Issues: 5
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# NetMF
This is a Python implementation of NetMF for the task of network embedding learning, as described in our paper:
[Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec](https://arxiv.org/abs/1710.02971)## Data Sets
BlogCatalog [Source](http://socialcomputing.asu.edu/datasets/BlogCatalog3) [Preprocessed](http://leitang.net/code/social-dimension/data/blogcatalog.mat)
Protein-Protein Interaction [Source](http://thebiogrid.org/download.php) [Preprocessed](http://snap.stanford.edu/node2vec/Homo_sapiens.mat)
Wikipedia [Source](http://www.mattmahoney.net/dc/textdata) [Preprocessed](http://snap.stanford.edu/node2vec/POS.mat)
[Flickr](http://leitang.net/code/social-dimension/data/flickr.mat)
## Cite
Please cite our paper if you use this code in your own work:
```
@inproceedings{qiu2018network,
title={Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec},
author={Qiu, Jiezhong and Dong, Yuxiao and Ma, Hao and Li, Jian and Wang, Kuansan and Tang, Jie},
booktitle={Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining},
pages={459--467},
year={2018},
organization={ACM}
}
```