Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/xre22zax/biodiversity---national-parks
National Parks Service about endangered species
https://github.com/xre22zax/biodiversity---national-parks
data-analysis-python data-visualization ipynb python python3
Last synced: 27 days ago
JSON representation
National Parks Service about endangered species
- Host: GitHub
- URL: https://github.com/xre22zax/biodiversity---national-parks
- Owner: xre22zax
- Created: 2024-01-11T10:56:53.000Z (10 months ago)
- Default Branch: main
- Last Pushed: 2024-01-21T10:45:15.000Z (10 months ago)
- Last Synced: 2024-10-11T15:40:14.496Z (27 days ago)
- Topics: data-analysis-python, data-visualization, ipynb, python, python3
- Language: Jupyter Notebook
- Homepage:
- Size: 1.77 MB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: ReadMe.md
Awesome Lists containing this project
README
# Analyzing National Parks Service
## Overview
In this report I analyst National Parks Service about endangered species in different parks and their status.
---
## Libraries Used :
+ pandas
+ numpy
+ seaborn
+ matplotlib.pyplot
+ re---
### Methods Employed :
1. Data manipulation:
- merge()
- For loop
- Group by
- lambda
- loc
- isna()
- value_counts()
- dropna()
- min()
- mean()
- sum()
- max()
- size()
- duplicated()
- list
- compile
- reset_index
2. Data visualization:
- crosstab
- unstack
- autopct
- marker
- edgecolor
- bins
- linestyle
- label
- alpha
- plt.grid
- plt.axvline
- plt.ylim
- ascending
- pivot---
## Graphs :
* Bar chart
* plt.hist (histogram plot)
* pie chart
* crosstab---
## Key Findings :
* Protected species
* Most protected species among their own and all of the species
* Endangered species
* Threatened species
* Species of concern
* Specie and park in every conservation status---
## Getting Started
1. Clone this repository.
2. Install the required libraries: pip install pandas numpy seaborn matplotlib re
3. Run the main Python script: biodiversity.ipynb---
## Usage
- Explore the generated visualizations to gain insights into the data.
- Modify the code to experiment with different visualizations and analyses.---
## Contributing
Feel free to submit issues or pull requests for improvements or additions.
---
## Author
[Reza Sadeghi](https://github.com/xre22zax/)