Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/xtensor-stack/xtensor-julia

Julia bindings for xtensor
https://github.com/xtensor-stack/xtensor-julia

Last synced: about 1 month ago
JSON representation

Julia bindings for xtensor

Awesome Lists containing this project

README

        

# ![xtensor-julia](docs/source/xtensor-julia.svg)

[![Documentation Status](http://readthedocs.org/projects/xtensor-julia/badge/?version=latest)](https://xtensor-julia.readthedocs.io/en/latest/?badge=latest)
[![Join the Gitter Chat](https://badges.gitter.im/Join%20Chat.svg)](https://gitter.im/QuantStack/Lobby?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)

Julia bindings for the [xtensor](https://github.com/xtensor-stack/xtensor) C++ multi-dimensional array library.

- `xtensor` is a C++ library for multi-dimensional arrays enabling numpy-style broadcasting and lazy computing.
- `xtensor-julia` enables inplace use of julia arrays in C++ with all the benefits from `xtensor`

- C++ universal function and broadcasting
- STL - compliant APIs.
- A broad coverage of numpy APIs (see [the numpy to xtensor cheat sheet](http://xtensor.readthedocs.io/en/latest/numpy.html)).

The Julia bindings for `xtensor` are based on the [libcxxwrap](https://github.com/JuliaInterop/libcxxwrap-julia/) C++ library.

## Documentation

To get started with using `xtensor-julia`, check out the full documentation

http://xtensor-julia.readthedocs.io/

## Usage

xtensor-julia offers two container types wrapping julia arrays inplace to provide an xtensor semantics

- `jltensor`
- `jlarray`.

Both containers enable the numpy-style APIs of xtensor (see [the numpy to xtensor cheat sheet](http://xtensor.readthedocs.io/en/latest/numpy.html)).

- On the one hand, `jlarray` has a dynamic number of dimensions. It can be reshaped dynamically and the new shape is reflected on the Julia side.

- On the other hand `jltensor` has a compile time number of dimensions, specified with a template parameter. Shapes of `jltensor` instances are stack allocated, making `jltensor` a significantly faster expression than `jlarray`.

### Example 1: Use an algorithm of the C++ standard library with Julia array.

**C++ code**

```cpp
#include // Standard library import for std::accumulate
#include // libcxxwrap import to define Julia bindings
#include "xtensor-julia/jltensor.hpp" // Import the jltensor container definition
#include "xtensor/xmath.hpp" // xtensor import for the C++ universal functions

double sum_of_sines(xt::jltensor m)
{
auto sines = xt::sin(m); // sines does not actually hold values.
return std::accumulate(sines.cbegin(), sines.cend(), 0.0);
}

JLCXX_MODULE define_julia_module(jlcxx::Module& mod)
{
mod.method("sum_of_sines", sum_of_sines);
}
```

**Julia Code**

```julia
using xtensor_julia_test

arr = [[1.0 2.0]
[3.0 4.0]]

s = sum_of_sines(arr)
s
```

**Outputs**

```
1.1350859243855171
```

### Example 2: Create a numpy-style universal function from a C++ scalar function

**C++ code**

```cpp
#include
#include "xtensor-julia/jlvectorize.hpp"

double scalar_func(double i, double j)
{
return std::sin(i) - std::cos(j);
}

JLCXX_MODULE define_julia_module(jlcxx::Module& mod)
{
mod.method("vectorized_func", xt::jlvectorize(scalar_func));
}
```

**Julia Code**

```julia
using xtensor_julia_test

x = [[ 0.0 1.0 2.0 3.0 4.0]
[ 5.0 6.0 7.0 8.0 9.0]
[10.0 11.0 12.0 13.0 14.0]]
y = [1.0, 2.0, 3.0, 4.0, 5.0]
z = vectorized_func(x, y)
z
```

**Outputs**

```
[[-0.540302 1.257618 1.89929 0.794764 -1.040465],
[-1.499227 0.136731 1.646979 1.643002 0.128456],
[-1.084323 -0.583843 0.45342 1.073811 0.706945]]
```

## Installation

### Installation of the standalone C++ library

`xtensor-julia` a header-only C++ library. It has been packaged for the mamba (or conda) package manager.

```bash
mamba install xtensor-julia -c conda-forge
```

`xtensor-r` can be installed from source with cmake in any installation prefix. For example, on unix systems

```bash
cmake -D CMAKE_INSTALL_PREFIX=/prefix/path/
make
make install
```

### Installation of the Julia package

We also provide a Julia package for xtensor, which has been packaged for both conda and Pkg (Julia's package manager). The repository for the Julia package is https://github.com/xtensor-stack/Xtensor.jl.

To install the Julia package:

```julia
using Pkg; Pkg.add("Xtensor");
```

The Julia available from the Julia package manager vendors the headers for `xtensor-julia`, xtensor`, `xtl` and `xsimd`.

## Building the HTML Documentation

`xtensor-julia`'s documentation is built with three tools

- [doxygen](http://www.doxygen.org)
- [sphinx](http://www.sphinx-doc.org)
- [breathe](https://breathe.readthedocs.io)

While doxygen must be installed separately, you can install breathe by typing

```bash
pip install breathe
```

Breathe can also be installed with `conda`

```bash
conda install -c conda-forge breathe
```

Finally, build the documentation with

```bash
make html
```

from the `docs` subdirectory.

## Running the tests

```
cmake -D BUILD_TESTS=ON ..
```

## Dependencies on `xtensor` and `libcxxwrap-julia`

`xtensor-julia` depends on the `xtensor` and `libcxxwrap-julia` libraries

| `xtensor-julia` | `xtensor` | `libcxxwrap` | `julia` |
|-----------------|-----------|---------------|----------------|
| master | ^0.24.0 | >=0.9,<0.10 | >=1.6.4,<2.0 |
| 0.10.2 | ^0.24.0 | >=0.0,<0.10 | >=1.6.4,<2.0 |
| 0.10.1 | ^0.24.0 | >=0.8.3,<0.9 | >=1.6.4,<2.0 |
| 0.10.0 | ^0.24.0 | >=0.8.3,<0.9 | >=1.6.4,<2.0 |
| 0.9.0 | ^0.21.2 | >=0.5.3,<0.6 | >=1.0.0,<1.1 |

These dependencies are automatically resolved when using the Julia package manager.

## License

We use a shared copyright model that enables all contributors to maintain the copyright on their contributions.

This software is licensed under the BSD-3-Clause license. See the [LICENSE](LICENSE) file for details.