Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/xu-justin/patchmentation-dataset
This datasets are used to benchmark patch augmentation performance of patchmentation.
https://github.com/xu-justin/patchmentation-dataset
benchmarking dataset-augmentation patchmentation
Last synced: 11 days ago
JSON representation
This datasets are used to benchmark patch augmentation performance of patchmentation.
- Host: GitHub
- URL: https://github.com/xu-justin/patchmentation-dataset
- Owner: Xu-Justin
- Created: 2022-12-12T07:08:02.000Z (about 2 years ago)
- Default Branch: main
- Last Pushed: 2023-03-07T17:03:29.000Z (almost 2 years ago)
- Last Synced: 2024-11-11T14:12:33.635Z (2 months ago)
- Topics: benchmarking, dataset-augmentation, patchmentation
- Language: Python
- Homepage: https://github.com/Xu-Justin/patchmentation
- Size: 3.14 MB
- Stars: 1
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Patchmentation Dataset
This datasets are used to benchmark patch augmentation performance of [patchmentation](https://github.com/Xu-Justin/patchmentation).
The benchmarking results can be found at [Xu-Justin/patchmentation-yolov5](https://github.com/Xu-Justin/patchmentation-yolov5#experiment-results-and-comparison).
## Dependency
* Using PIP
```bash
pip install -r requirements.txt
```* Using Docker (recommended)
```bash
docker pull jstnxu/patchmentation:dataset
docker run -it \
-v {cache_folder}:/root/.cache/patchmentation-data \
-v {data_folder}:/workspace/data \
jstnxu/patchmentation:dataset /bin/bash
```
* change `{cache_folder}` to local path to save cache.* change `{data_folder}` to local path to save generated data.
## Dataset Spesification
* **Training Dataset**
train-pascal-voc-2007
* Number of Images: 2501
* Number of Classes: 20
* Source: Pascal VOC 2007 - Train```bash
python3 dataset.py --version train-pascal-voc-2007 --generate
```
train-pascal-voc-2007-tiny
* Number of Images: 200
* Number of Classes: 20
* Source: Pascal VOC 2007 - Train```bash
python3 dataset.py --version train-pascal-voc-2007-tiny --generate --batch 2
```
train-pascal-voc-2007-v1
* Number of Images: 2,500
* Number of Classes: 20
* Source: Pascal VOC 2007 - Train* Actions
* `filter.FilterWidth(50, Comparator.GreaterEqual)`
* `filter.FilterHeight(50, Comparator.GreaterEqual)`
* `transform.RandomResize(width_range=(50, 150), aspect_ratio=transform.Resize.AUTO_ASPECT_RATIO)`* Kwargs
* `max_n_patches = 10`
```bash
python3 dataset.py --version train-pascal-voc-2007-v1 --generate --batch 30
```
train-pascal-voc-2007-v2
* Number of images: 2,500
* Number of Classes: 20
* Source: Pascal VOC 2007 - Train* Actions
* `filter.FilterWidth(50, Comparator.GreaterEqual)`
* `filter.FilterHeight(50, Comparator.GreaterEqual)`
* `transform.RandomResize(width_range=(50, 150), aspect_ratio=transform.Resize.AUTO_ASPECT_RATIO)`* `filter.FilterWidth(30, Comparator.GreaterEqual)`
* `filter.FilterHeight(30, Comparator.GreaterEqual)`
* `transform.SoftEdge(13, 20)`
* Kwargs
* `max_n_patches = 20`
* `visibility_threshold = 1.0`
```bash
python3 dataset.py --version train-pascal-voc-2007-v2 --generate --batch 30
```
train-pascal-voc-2007-v3
* Number of images: 2,500
* Number of Classes: 20
* Source: Pascal VOC 2007 - Train* Actions
* `filter.FilterWidth(50, Comparator.GreaterEqual)`
* `filter.FilterHeight(50, Comparator.GreaterEqual)`
* `transform.RandomResize(width_range=(50, 150), aspect_ratio=transform.Resize.AUTO_ASPECT_RATIO)`* Kwargs
* `max_n_patches = 20`
* `visibility_threshold = 0.8`
* `ratio_negative_patch = 5.0`
* `iou_negative_patch = 0.2`
```bash
python3 dataset.py --version train-pascal-voc-2007-v3 --generate --batch 30
```
train-pascal-voc-2007-v4
* Number of images: 2,500
* Number of Classes: 20
* Source: Pascal VOC 2007 - Train* Actions
* `filter.FilterWidth(50, Comparator.GreaterEqual)`
* `filter.FilterHeight(50, Comparator.GreaterEqual)`
* `transform.RandomResize(width_range=(50, 150), aspect_ratio=transform.Resize.AUTO_ASPECT_RATIO)`* `filter.FilterWidth(30, Comparator.GreaterEqual)`
* `filter.FilterHeight(30, Comparator.GreaterEqual)`
* `transform.SoftEdge(13, 20)`
* Kwargs
* `max_n_patches = 20`
* `visibility_threshold = 0.8`
* `ratio_negative_patch = 5.0`
* `iou_negative_patch = 0.2`
```bash
python3 dataset.py --version train-pascal-voc-2007-v4 --generate --batch 30
```
train-penn-fudan-ped-person
* Number of images: 100
* Number of Classes: 1
* Source: Penn Fudan Ped```bash
python3 dataset.py --version train-penn-fudan-ped-person --generate --batch 100
```
train-campus
* Number of images: 250
* Number of Classes: 1
* Source: Campus - Garden1, Penn Fudan Ped* Actions
* `filter.FilterWidth(20, Comparator.GreaterEqual)`
* `filter.FilterHeight(20, Comparator.GreaterEqual)`
* `transform.RandomResize(height_range=(150, 600), aspect_ratio=transform.Resize.AUTO_ASPECT_RATIO)`* `transform.SoftEdge(5, 10)`
* Kwargs
* `max_n_patches = 30`
* `visibility_threshold = 0.8`
```bash
python3 dataset.py --version train-campus --generate --batch 50
```
* **Validation Dataset**
valid-pascal-voc-2007
* Number of Images: 2,510
* Number of Classes: 20
* Source: Pascal VOC 2007 - Val```bash
python3 dataset.py --version valid-pascal-voc-2007 --generate
```
valid-penn-fudan-ped-person
* Number of images: 70
* Number of Classes: 1
* Source: Penn Fudan Ped```bash
python3 dataset.py --version valid-penn-fudan-ped-person --generate
```
valid-campus
* Number of images: 256
* Number of Classes: 1
* Source: Campus - Garden1```bash
python3 dataset.py --version valid-campus --generate
```
* **Test Dataset**
test-pascal-voc-2007
* Number of Images: 4,952
* Number of Classes: 20
* Source: Pascal VOC 2007 - Test```bash
python3 dataset.py --version test-pascal-voc-2007 --generate
```
test-campus
* Number of images: 11,538
* Number of Classes: 1
* Source: Campus - Garden1```bash
python3 dataset.py --version test-campus --generate
```
## Arguments
| Priority* | Arguments | Type | Description |
|:---------:|:--------------:|:-----------------:|------------------------------------------------------------------------------------------------------------------|
| - | `--version` | one or more `str` | Dataset version(s). |
| - | `--overwrite` | `store_true` | Overwrite existing dataset / zip. |
| - | `--batch` | `int` | Number of batch to generate (default=`1`) |
| 1 | `--generate` | `store_true` | Generate the dataset. If `overwrite` is true, it will remove the dataset (if exists) before generating. |
| 2 | `--zip` | `store_true` | Zip the dataset. If `overwrite` is true, it will remove the dataset zip (if exists) before zipping. |
| 3 | `--upload` | `store_true` | Upload the dataset zip. |
| 4 | `--remove-zip` | `store_true` | Remove the dataset zip, if exists. |
| 5 | `--download` | one or more `url` | Download the dataset zip. If `overwrite` is true, it will remove the dataset zip (if exists) before downloading. |
| 6 | `--unzip` | `store_true` | Unzip the dataset zip. If `overwrite` is true, it will remove the dataset (if exists) before unzipping. |
| 7 | `--validate` | `store_true` | Validate the dataset. |
| 8 | `--remove` | `store_true` | Remove the dataset, if exists. |**Smaller priority number will be executed first*
---
This project was developed as part of thesis project, Computer Science, BINUS University.