Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/xu-song/bert-as-language-model

BERT as language model, fork from https://github.com/google-research/bert
https://github.com/xu-song/bert-as-language-model

bert language-model tensorflow

Last synced: 3 months ago
JSON representation

BERT as language model, fork from https://github.com/google-research/bert

Awesome Lists containing this project

README

        

**[🤗Demo](#demo)** |
**[📖cases-en](#test-case)** |
**[📖cases-zh](cases/test.zh.md)** |

## BERT as Language Model

For a sentence S = w_1, w_2,..., w_k , we have

p(S) = \prod_{i=1}^{k} p(w_i | context)

In traditional language model, such as RNN, context = w_1, ..., w_{i-1} ,

p(S) = \prod_{i=1}^{k} p(w_i | w_1, ..., w_{i-1})

In bidirectional language model, it has larger context, context = w_1, ..., w_{i-1},w_{i+1},...,w_k.

In this implementation, we simply adopt the following approximation,

p(S) \approx \prod_{i=1}^{k} p(w_i | w_1, ..., w_{i-1},w_{i+1}, ...,w_k).

### Demo

Try out the [Web Demo](https://huggingface.co/spaces/eson/bert-perplexity) at [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/eson/bert-perplexity)

### test-case

> [more cases: 中文](cases/test.zh.md)

```bash
export BERT_BASE_DIR=model/uncased_L-12_H-768_A-12
export INPUT_FILE=data/lm/test.en.tsv
python run_lm_predict.py \
--input_file=$INPUT_FILE \
--vocab_file=$BERT_BASE_DIR/vocab.txt \
--bert_config_file=$BERT_BASE_DIR/bert_config.json \
--init_checkpoint=$BERT_BASE_DIR/bert_model.ckpt \
--max_seq_length=128 \
--output_dir=/tmp/lm_output/
```

for the following test case

```bash
$ cat data/lm/test.en.tsv
there is a book on the desk
there is a plane on the desk
there is a book in the desk

$ cat /tmp/lm/output/test_result.json
```
output:

```yml
# prob: probability
# ppl: perplexity
[
{
"tokens": [
{
"token": "there",
"prob": 0.9988962411880493
},
{
"token": "is",
"prob": 0.013578361831605434
},
{
"token": "a",
"prob": 0.9420605897903442
},
{
"token": "book",
"prob": 0.07452250272035599
},
{
"token": "on",
"prob": 0.9607976675033569
},
{
"token": "the",
"prob": 0.4983428418636322
},
{
"token": "desk",
"prob": 4.040586190967588e-06
}
],
"ppl": 17.69329728285426
},
{
"tokens": [
{
"token": "there",
"prob": 0.996775209903717
},
{
"token": "is",
"prob": 0.03194097802042961
},
{
"token": "a",
"prob": 0.8877727389335632
},
{
"token": "plane",
"prob": 3.4907534427475184e-05 # low probability
},
{
"token": "on",
"prob": 0.1902322769165039
},
{
"token": "the",
"prob": 0.5981084704399109
},
{
"token": "desk",
"prob": 3.3164762953674654e-06
}
],
"ppl": 59.646456254851806
},
{
"tokens": [
{
"token": "there",
"prob": 0.9969795942306519
},
{
"token": "is",
"prob": 0.03379646688699722
},
{
"token": "a",
"prob": 0.9095568060874939
},
{
"token": "book",
"prob": 0.013939591124653816
},
{
"token": "in",
"prob": 0.000823647016659379 # low probability
},
{
"token": "the",
"prob": 0.5844194293022156
},
{
"token": "desk",
"prob": 3.3361218356731115e-06
}
],
"ppl": 54.65941516205144
}
]
```