Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/xudonmao/VMT
https://github.com/xudonmao/VMT
Last synced: 3 months ago
JSON representation
- Host: GitHub
- URL: https://github.com/xudonmao/VMT
- Owner: xudonmao
- License: mit
- Created: 2019-07-03T14:15:24.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2019-08-15T14:55:45.000Z (about 5 years ago)
- Last Synced: 2023-06-16T11:30:35.094Z (over 1 year ago)
- Language: Python
- Size: 18.6 KB
- Stars: 19
- Watchers: 1
- Forks: 4
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- Awesome-Mixup - [Code
README
# VMT
Code for [Virtual Mixup Training for Unsupervised Domain Adaptation](https://arxiv.org/abs/1905.04215).
### Acknowledgments
This code is based on [dirt-t](https://github.com/RuiShu/dirt-t).
### Dependencies
```python
numpy==1.14.1
scikit_image==0.13.1
scipy==1.0.0
tensorflow_gpu==1.6.0
tensorbayes==0.4.0
```### Train
1. Run VMT
```
python -u run_dirtt.py --datadir data --src mnist --trg svhn --inorm 1 --run 0 --dirt 0 --dw 0.01 --svw 1 --tvw 0.06 --tcw 0.06 --smw 1 --tmw 0.06
```2. Run DIRT-T
```
python -u run_dirtt.py --datadir data --src mnist --trg svhn --inorm 1 --run 0 --dirt 5000 --dw 0.01 --svw 1 --tvw 0.06 --tcw 0.06 --smw 1 --tmw 0.06
```### Citation
If you use this work in your research, please cite:@article{arxiv1905.04215,
author = {Xudong Mao and Yun Ma and Zhenguo Yang and Yangbin Chen and Qing Li},
title = {Virtual Mixup Training for Unsupervised Domain Adaptation},
journal = {arXiv preprint arXiv:1905.04215},
year = {2019}
}